The Impact of Soil Desalination on Reduction of Iron Concentration in Groundwater

  • Ronny Ronny Politeknik Kesehatan Kemenkes Makassar
  • Mulyadi Mulyadi Politeknik Kesehatan Kemenkes Makassar
Keywords: Absorption, Clean Water, Brackish Water, Mineral Kaolin, Water Quality

Abstract

Brackish water is one source of clean water and drinking water in coastal areas, river estuaries, and small islands. Various studies have carried out that the use of clay can reduce minerals in the water. This research aims to find out and analyze the Cascade Aerator System and Rapid Sand Filter based on Clay in Reducing Iron Concentration in Well Water. The type of research used is experimental with a quantitative approach. In this study, the researchers used the Pretest-Posttest Control Group Design. The study's location was conducted on Sapuli Island in Pangkep Regency, South Sulawesi Province, and Sindulang Satu Village in Manado City, Central Sulawesi Province. The study's design used a Completely Randomized Design (CRD) with a combination of treatments that obtained 6 x 3 = 18 treatment combinations. This study's population is all well water that is in two research areas, and then the sample collection technique is used simple random sampling with 15 samples of well water. The research obtained a decrease in the maximum average iron (Fe) level obtained reached 57.27% by adding a 20-gram of clay as desalination in 10 liters of well water. The decline that occurred in the two study sites did not differ significantly. Reduction of Iron (Fe) levels through Cascade aerators and Rapid Sand Filters by adding clay as a binder due to the material of kaolin in clay.

References

K. J. Ruskin, S. H. Rosenbaum, and I. J. Rampil, Fundamentals of neuroanesthesia: a physiologic approach to clinical practice. Oxford University Press, 2013.

N. C. Moreland, “Fundamentals of Neuroanesthesia: A Physiologic Approach to Clinical Practice,” J. Am. Soc. Anesthesiol., vol. 121, no. 4, pp. 908–909, 2014.

WHO/UNICEF Joint Water Supply, Sanitation Monitoring Programme., Progress on drinking water and sanitation: 2014 update. World Health Organization, 2014.

Ronny. and A. H. Hasim, “Effectiveness of Multiple Tray-Aerators in Reducing Iron (Fe) Water Wells in Gowa Regency, Indonesia,” Ecol. Environ. Conserv., vol. 24, no. 1, pp. 22–25, 2018.

Ronny, Erlani, and Jasman, “Level of Correlation in the Depth of Groundwater Wells: Iron and Chloride,” Indian J. Environ. Prot., vol. 39, no. 8, pp. 746–751, 2019.

Ronny, B. Y. M. Badjuka, Jasman, Rusli, and H. B. Notobroto, “The Combination of Aeration and Filtration System in Reducing Water Pollution: An Experimental Study,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 10, no. 5, pp. 2103–2110, 2020.

L. F. Greenlee, D. F. Lawler, B. D. Freeman, B. Marrot, and P. Moulin, “Reverse osmosis desalination: water sources, technology, and today’s challenges,” Water Res., vol. 43, no. 9, pp. 2317–2348, 2009.

R. J. Petersen, “Composite reverse osmosis and nanofiltration membranes,” J. Memb. Sci., vol. 83, no. 1, pp. 81–150, 1993.

S. Mustafa, H. Bashir, N. Rehana, and A. Naeem, “Selectivity reversal and dimerization of chromate in the exchanger Amberlite IRA-400,” React. Funct. Polym., vol. 34, no. 2–3, pp. 135–144, 1997.

L. H. Wartelle and W. E. Marshall, “Chromate ion adsorption by agricultural by-products modified with dimethyloldihydroxyethylene urea and choline chloride,” Water Res., vol. 39, no. 13, pp. 2869–2876, 2005.

A. W. Skempton, “The colloidal activity of clays,” Sel. Pap. soil Mech., pp. 106–118, 1953.

P. F. Kerr, Optical mineralogy. California: McGraw-Hill, 1959.

K. G. Bhattacharyya and S. Sen Gupta, “Kaolinite and montmorillonite as adsorbents for Fe (III), Co (II) and Ni (II) in aqueous medium,” Appl. Clay Sci., vol. 41, no. 1–2, pp. 1–9, 2008, doi: 10.1016/j.clay.2007.09.005.

K. Ellis and W. E. Wood, “Slow sand filtration,” Crit. Rev. Environ. Sci. Technol., vol. 15, no. 4, pp. 315–354, 1985.

C. A. Prochaska and A. I. Zouboulis, “Performance of intermittently operated sand filters: a comparable study, treating wastewaters of different origins,” Water. Air. Soil Pollut., vol. 147, no. 1–4, pp. 367–388, 2003.

M. L. Weber-Shirk and R. I. Dick, “Physical-chemical mechanisms in slow sand filters,” Am. Water Work. Assoc. J., vol. 89, no. 1, p. 87, 1997.

Y. K. Singh, Fundamental Research Methodology and Statistics. New Delhi, India: New Age International (P) Ltd., Publishers, 2006.

K. Hinkelmann and O. Kempthorne, Design and Analysis of Experiments: Introduction to Experimental Design, Volume 1, 2nd ed. New Jersey: John Wiley & Sons, Inc., 2008.

J. W. Creswell and V. L. P. Clark, Designing and Conducting Mixed Methods Research, 3rd ed. Beverly Hills, CA: SAGE Publications, 2018.

V. L. Anderson and R. A. McLean, Design of experiments: a realistic approach. Routledge, 2018.

A. Dean, D. Voss, and D. Draguljić, Design and analysis of experiments, vol. 1. Springer, 1999.

D. C. Montgomery, Design, and analysis of experiments. John wiley & sons, 2017.

Hinton, Perry R., Mcmurray, Isabella., and Brownlow, Charlotte., SPSS Explained, 2nd ed. New York: Routledge, 2014.

Roscoe, John T., Fundamental Research Statistics for the Behavioral Sciences, 2nd ed. New York: Holt, Rinehart, and Winston, 1975.

Diehl, P L. and L. R. Gay, “Research Methods for Business and Management,” New York McMillan, 1992.

S. Sen Gupta and K. G. Bhattacharyya, “Adsorption of Ni (II) on clays,” J. Colloid Interface Sci., vol. 295, no. 1, pp. 21–32, 2006.

J. E. Bowles, Physical and Geotechnical Properties of Soils, 2nd ed. New York, USA: McGraw-Hill, 1979.

M. K. Uddin, “A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade,” Chem. Eng. J., vol. 308, pp. 438–462, 2017, doi: 10.1016/j.cej.2016.09.029.

H. O. Buckman and N. C. Brady, The Nature and Properties of Soils. New York: Mac Millan. Pub. Co. Inc, 1982.

B. R. Moss, Ecology of fresh waters: man and medium, past to future. John Wiley & Sons, 2009.

C. D. Busch, J. L. Koon, and R. Allison, “Aeration, water quality, and catfish production,” Trans. ASAE, vol. 17, no. 3, pp. 433–435, 1974.

F. C. Roe, “Aeration of Water by Air Diffusion,” J. Am. Water Works Assoc., vol. 27, no. 7, pp. 897–904, 1935.

H. Chanson and L. Toombes, Flow aeration at stepped cascades, no. Research Report No. CE155. 1997.

J. Zhu, C. F. Miller, C. Dong, X. Wu, L. Wang, and S. Mukhtar, “Aerator module development using venturi air injectors to improve aeration efficiency,” Appl. Eng. Agric., vol. 23, no. 5, pp. 661–667, 2007.

T. J. Seelaus, D. W. Hendricks, and B. A. Janonis, “Design and operation of a slow sand filter,” Journal‐American Water Work. Assoc., vol. 78, no. 12, pp. 35–41, 1986.

Y. J. Dullemont, J. F. Schijven, W. A. M. Hijnen, M. Colin, A. Magic-Knezev, and W. A. Oorthuizen, “Removal of microorganisms by slow sand filtration,” Recent Prog. Slow Sand Altern. Biofiltration Process., vol. 1, pp. 12–20, 2006.

H. E. Hudson, “Functional design of rapid sand filters,” J. Sanit. Eng. Div., vol. 89, no. 1, pp. 17–28, 1963.

A. Hounslow, Water quality data: analysis and interpretation. CRC press, 2018.

D. Z. Haman and A. B. Bottcher, Home water quality and safety. Citeseer, 1986.

Published
2020-12-24
How to Cite
[1]
R. Ronny and M. Mulyadi, “The Impact of Soil Desalination on Reduction of Iron Concentration in Groundwater”, Int. J. Environ. Eng. Educ., vol. 2, no. 3, pp. 43-48, Dec. 2020.
Section
Research Article