Estimating and Monitoring the Land Surface Temperature (LST) Using Landsat OLI 8 TIRS

  • Muhammad Rais Abidin Universitas Negeri Makassar
  • Rahmi Nur Universitas Sulawesi Barat
  • Erikha Maurizka Mayzarah Universitas Papua
  • Ramli Umar Universitas Negeri Makassar
Keywords: Climate Change, Global Warming, Land Use, Urban Index, Vegetation Indices

Abstract

Land Surface Temperature (LST) is average temperature of an element of the exact surface of the Earth calculated from measured radiance which depends on the albedo, the vegetation cover, and the soil moisture. Land Surface Temperature can affect human discomfort, health problem, higher energy bill and further reduce the habitability of urban and sub urban area as Makassar city has been recently undergoing massive urban development.  This study tries to monitor and estimate Land Surface Temperature by using Landsat 8 TIRS and the data analyzed by vegetation index, and temperature index in order to derive Land Surface Temperature value. The result shows that the vegetation area declined around 3470 hectares in the last four years while the urban area increased approximately 1509 hectare. In addition, 2015, Makassar, South Sulawesi, Indonesia are experienced the highest temperature at 32 degree Celsius while 2019 shown that the maximum heat reached 29 degree celsius. However, the moderate and high temperature (26 – 29 degree Celsius) in 2019 expand and cover wider area than in 2015 as the area of vegetation declined and built-up area increased significantly

Downloads

Download data is not yet available.

References

M. L. Khandekar, T. S. Murty, and P. Chittibabu, “The global warming debate: A review of the state of science,” Pure Appl. Geophys., vol. 162, no. 8, pp. 1557–1586, 2005.

P. K. Bhattacharjee, “Global warming impact on the earth,” Int. J. Environ. Sci. Dev., vol. 1, no. 3, p. 219, 2010.

M. Bokaie, M. K. Zarkesh, P. D. Arasteh, and A. Hosseini, “Assessment of urban heat island based on the relationship between land surface temperature and land use/land cover in Tehran,” Sustain. Cities Soc., vol. 23, pp. 94–104, 2016.

K. S. Kumar, P. U. Bhaskar, and K. Padmakumari, “Estimation of land surface temperature to study urban heat island effect using LANDSAT ETM+ image,” Int. J. Eng. Sci. Technol., vol. 4, no. 2, pp. 771–778, 2012.

R. C. Estoque, Y. Murayama, and S. W. Myint, “Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia,” Sci. Total Environ., vol. 577, pp. 349–359, 2017.

Q. Weng, D. Lu, and J. Schubring, “Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies,” Remote Sens. Environ., vol. 89, no. 4, pp. 467–483, 2004.

C. P. Morice et al., “An updated assessment of near‐surface temperature change from 1850: the HadCRUT5 dataset,” J. Geophys. Res. Atmos., p. e2019JD032361, 2020.

M. I. Ali, G. D. Dirawan, A. H. Hasim, and M. R. Abidin, “Detection of Changes in Surface Water Bodies Urban Area with NDWI and MNDWI Methods,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 3, pp. 946–951, 2019.

M. I. Ali, A. H. Hasim, and M. R. Abidin, “Monitoring the Built-up Area Transformation Using Urban Index and Normalized Difference Built-up Index Analysis,” Int. J. Eng. Trans. B Appl., vol. 32, no. 5, pp. 647–653, 2019.

S. Sloan et al., “Infrastructure development and contested forest governance threaten the Leuser Ecosystem, Indonesia,” Land use policy, vol. 77, pp. 298–309, 2018.

K. Tzoulas et al., “Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review,” Landsc. Urban Plan., vol. 81, no. 3, pp. 167–178, 2007.

F. Ascensão et al., “Environmental challenges for the Belt and Road Initiative,” Nat. Sustain., vol. 1, no. 5, pp. 206–209, 2018.

J. A. Patz, S. H. Olson, C. K. Uejio, and H. K. Gibbs, “Disease emergence from global climate and land use change,” Med. Clin. North Am., vol. 92, no. 6, pp. 1473–1491, 2008.

Z. Wan, P. Wang, and X. Li, “Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA,” Int. J. Remote Sens., vol. 25, no. 1, pp. 61–72, 2004.

F. S. Chapin et al., “Role of land-surface changes in Arctic summer warming,” Science (80-. )., vol. 310, no. 5748, pp. 657–660, 2005.

Y. Zhang, A. Harris, and H. Balzter, “Characterizing fractional vegetation cover and land surface temperature based on sub-pixel fractional impervious surfaces from Landsat TM/ETM+,” Int. J. Remote Sens., vol. 36, no. 16, pp. 4213–4232, 2015.

Z. Zhang, M. Ji, J. Shu, Z. Deng, and Y. Wu, “Surface urban heat island in Shanghai, China: Examining the relationship between land surface temperature and impervious surface fractions derived from Landsat ETM+ imagery,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, vol. 37, pp. 601–606, 2008.

H. Tran, D. Uchihama, S. Ochi, and Y. Yasuoka, “Assessment with satellite data of the urban heat island effects in Asian mega cities,” Int. J. Appl. Earth Obs. Geoinf., vol. 8, no. 1, pp. 34–48, 2006.

T. N. Carlson, J. A. Augustine, and F. E. Boland, “Potential application of satellite temperature measurements in the analysis of land use over urban areas,” Bull. Am. Meteorol. Soc., pp. 1301–1303, 1977.

R. Maru, M. R. Abidin, A. Arfan, S. Nyompa, U. Uca, and S. Hasja, “Mapping of Protected Forests and Cultivated Area in North Luwu South Sulawesi, Indonesia,” Asian J. Aplied Sci., 2016.

A. Arfan et al., “Production and decomposition rate of litterfall Rhizophora mucronata,” Environ. Int. J. by Thai Soc. High. Educ. Institutes Environ., vol. 11, no. 1, pp. 1–242, 2018.

A. Rajeshwari and N. D. Mani, “Estimation of land surface temperature of Dindigul district using Landsat 8 data,” Int. J. Res. Eng. Technol., vol. 3, no. 5, pp. 122–126, 2014.

V. Otero, C. Mosier, and D. Neuberger, “Thermal Infrared Sensor (TIRS) Instrument Thermal Subsystem Design and Lessons Learned,” in 43rd International Conference on Environmental Systems, 2013, p. 3445.

U.S. Geological Survey, “Mineral Commodity Summaries,” Reston, VA, 2014. doi: 10.3133/70100414.

R. Maru and S. Ahmad, “The relationship between land use changes and the urban heat island phenomenon in Jakarta, Indonesia,” Adv. Sci. Lett., vol. 21, no. 2, pp. 150–152, 2015.

A. Rifani, E. A. Saputro, I. Invanni, and R. Maru, “Study of Land Surface Temperature Using Remote Sensing Satellite Imagery in makassar, Sout Sulawesi,” in Proceeding of 9th InternationalGraduate Students and Scholars’ Conference in Indonesia (IGSSCI), The 9th In, 2017, pp. 179–190.

R. Maru et al., “Analysis of The Heat Island Phenomenon in Makassar, South Sulawesi, Indonesia,” Am. J. Appl. Sci., vol. 12, no. 9, 2015.

BPS-Statistics of Makassar, Makassar in Figures. Makassar: BPS-Statistics of Makassar, 2018.

Product Guide, “Landsat Surface Reflectance-Derived Spectral Indices; 3.6 Version,” Dep. Inter. US Geol. Surv. Reston, VA, USA, 2017.

N. Landsat, “Science Data Users Handbook,” Availabe online http//landsathandbook. gsfc. nasa. gov/inst_cal/prog_sect8_2. html (7)(accessed 11 March 2011), 7AD.

O. Rozenstein, Z. Qin, Y. Derimian, and A. Karnieli, “Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm,” Sensors, vol. 14, no. 4, pp. 5768–5780, 2014.

J. R. Irons, J. L. Dwyer, and J. A. Barsi, “The next Landsat satellite: The Landsat data continuity mission,” Remote Sens. Environ., vol. 122, pp. 11–21, 2012.

O. Orhan, S. Ekercin, and F. Dadaser-Celik, “Use of landsat land surface temperature and vegetation indices for monitoring drought in the Salt Lake Basin Area, Turkey,” Sci. World J., vol. 2014, 2014.

J. P. Joshi and B. Bhatt, “Estimating temporal land surface temperature using remote sensing: A study of Vadodara urban area, Gujarat,” Int. J. Geol. Earth Environ. Sci., vol. 2, no. 1, pp. 123–130, 2012.

F. Becker and Z.-L. Li, “Temperature-independent spectral indices in thermal infrared bands,” Remote Sens. Environ., vol. 32, no. 1, pp. 17–33, 1990.

F. Becker and Z.-L. Li, “Towards a local split window method over land surfaces,” Remote Sens., vol. 11, no. 3, pp. 369–393, 1990.

Y. Chen et al., “Improving land surface temperature modeling for dry land of China,” J. Geophys. Res. Atmos., vol. 116, no. D20, 2011.

Z. Wan and J. Dozier, “A generalized split-window algorithm for retrieving land-surface temperature from space,” IEEE Trans. Geosci. Remote Sens., vol. 34, no. 4, pp. 892–905, 1996.

A. Benali, A. C. Carvalho, J. P. Nunes, N. Carvalhais, and A. Santos, “Estimating air surface temperature in Portugal using MODIS LST data,” Remote Sens. Environ., vol. 124, pp. 108–121, 2012.

D. Skoković et al., “Calibration and Validation of land surface temperature for Landsat8-TIRS sensor,” L. Prod. Valid. Evol., 2014.

J. A. Sobrino et al., “Land surface emissivity retrieval from different VNIR and TIR sensors,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 2, pp. 316–327, 2008.

J. C. Jiménez-Muñoz, J. Cristóbal, J. A. Sobrino, G. Sòria, M. Ninyerola, and X. Pons, “Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 339–349, 2008.

J.-C. Jiménez-Muñoz and J. A. Sobrino, “Split-window coefficients for land surface temperature retrieval from low-resolution thermal infrared sensors,” IEEE Geosci. Remote Sens. Lett., vol. 5, no. 4, pp. 806–809, 2008.

G. C. Hulley, D. Ghent, F. M. Göttsche, P. C. Guillevic, D. J. Mildrexler, and C. Coll, “Land Surface Temperature,” in Taking the Temperature of the Earth, Elsevier, 2019, pp. 57–127.

J. D. Kalma, T. R. McVicar, and M. F. McCabe, “Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data,” Surv. Geophys., vol. 29, no. 4–5, pp. 421–469, 2008.

Y. Zhang, I. O. A. Odeh, and C. Han, “Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis,” Int. J. Appl. Earth Obs. Geoinf., vol. 11, no. 4, pp. 256–264, 2009.

D. A. Quattrochi and J. C. Luvall, Thermal remote sensing in land surface processing. CRC Press, 2004.

Published
2021-04-18
How to Cite
[1]
M. R. Abidin, R. Nur, E. M. Mayzarah, and R. Umar, “Estimating and Monitoring the Land Surface Temperature (LST) Using Landsat OLI 8 TIRS”, Int. J. Environ. Eng. Educ., vol. 3, no. 1, pp. 17-24, Apr. 2021.
Section
Research Article