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Abstract 
Difficulties developing higher-order thinking skills (HOTS) in mathematics education 
represent a persistent and significant challenge in educational practice. These skills, 
such as analysis, evaluation, and creation, are essential for students to succeed in 
complex problem-solving and adapt to the evolving demands of the 21st century. This 
study assesses how effectively structured metacognitive training improves high school 
students' mathematical HOTS. The research employed a quasi-experimental pretest-
posttest design involving 72 students from a senior high school in Indonesia, divided 
into two groups: an experimental group (n = 36) that received metacognitive training 
over one semester, and a control group (n = 36) that did not receive any intervention. 
The primary outcome measure was HOTS scores, assessed through standardized pre-
test and post-test instruments designed to evaluate students' higher-order thinking in 
mathematics. ANCOVA results revealed a significant effect of the metacognitive 
intervention on HOTS post-test scores (F = 44.36; p < 0.001; ηp² = 0.391), even after 
controlling for pre-test performance. The experimental group exhibited substantially 
greater HOTS improvements than the control group. These results prove that structured 
metacognitive training is an effective pedagogical strategy for fostering advanced 
mathematical thinking. The findings hold significant implications for curriculum 
designers, educators, and policymakers aiming to improve mathematics instruction, 
particularly within the Indonesian context. Future studies involving larger sample sizes, 
diverse school settings, and longitudinal follow-up are recommended to validate and 
extend the impact of this intervention. 
 

Keywords: Educational Intervention; Metacognitive Training; Mathematics Education; 
Problem Solving; Student Cognitive Regulation. 

 

 

1. INTRODUCTION 

Higher-order thinking skills (HOTS) are vital competencies in 
21st-century education, particularly within mathematics 
instruction [1], [2]. These skills encompass the ability to think 
critically, analytically, evaluatively, and creatively, 
competencies necessary for students to navigate complex, 
real-world challenges [3], [4]. However, numerous 
international studies have consistently reported low student 
performance in HOTS. For instance, the Programmed for 
International Student Assessment (PISA) has repeatedly 
highlighted students’ difficulties in solving mathematical 
problems that demand advanced cognitive processes such as 

critical, analytical, and creative thinking [5], [6]. This persistent 
challenge underscores the urgent need for innovative and 
effective instructional approaches to foster the development 
of students’ higher-order thinking [7]. 

One theoretically promising approach is incorporating 
metacognitive strategies into the learning process. 
Metacognition is an individual’s awareness, regulation, and 
control over their thinking processes. It comprises two primary 
components: knowledge of cognition and regulation of 
cognition [8]. The first refers to students’ understanding of 
effective learning strategies, while the latter involves planning, 
monitoring, and evaluating one's cognitive processes during 
learning [9]–[11]. Moreover, recent studies suggest that 
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metacognitive training promotes student autonomy and 
fosters self-directed learning—two key elements for 
developing HOTS [12], [13]. 

The implementation of metacognitive strategies in 
mathematics education has demonstrated a positive impact 
on student academic achievement. Empirical studies suggest 
that metacognitive interventions significantly enhance 
student performance across STEM disciplines [14], [15]. For 
example, Parwata et al. [16] found that training in 
metacognitive strategies effectively enhanced students' 
critical thinking skills and mathematics learning outcomes. 
Similarly, Wang et al. [12] reported that students who received 
metacognitive training were better able to solve complex 
mathematical problems requiring higher-order thinking. 
These findings align with earlier research by Kramarski & 
Mevarech [17], who demonstrated the efficacy of 
metacognitive instruction in improving mathematical 
reasoning and self-regulation. 

Moreover, learning environments encouraging students 
to manage their learning processes actively have also been 
associated with improved HOTS development. Fowler et al. 
[18] showed that virtual maker spaces, which provide 
autonomy and opportunities for collaboration, can 
significantly enhance students’ spatial reasoning and creativity, 
two key elements of HOTS. This aligns with the constructivist 
view, which suggests that students learn best when involved in 
self-directed, meaningful activities [19], [20]. In addition, 
studies by Kwon et al. [21] highlight that autonomy-supportive 
learning settings increase students’ motivation and 
engagement factors, which mediate the development of 
complex thinking skills. 

In addition to metacognitive strategies, integrating 
computational thinking into mathematics instruction has also 
shown promise in enhancing problem-solving skills. Lehtimäki 
et al. [22] found that engaging students with computational 
thinking tasks such as Bebras improved performance in 
solving complex mathematical problems, primarily through 
enhanced collaboration and communication. Research by 
Grover & Pea [23] further supports the integration of 
computational thinking into mathematics to build algorithmic 
reasoning and abstraction, which are integral to HOTS. 
Moreover, Brennan & Resnick [24] emphasize that 
computational thinking encourages iterative problem-solving, 
a trait shared with metacognitive processes. 

Although increasing evidence supports the advantages of 
metacognitive strategies, the literature still shows a notable 
gap regarding their use in senior high school mathematics 
education. Specifically, there is a lack of rigorous experimental 
research that designs tailored metacognitive training 
programs and explicitly measures their impact on students’ 
HOTS. As highlighted by Zohar & Barzilai [4], many previous 
studies lack clear instructional frameworks for 
operationalizing HOTS and metacognition simultaneously. 
The present study aims to fill this gap by providing a well-
structured experimental design and empirical evaluation of 
how metacognitive strategies improve HOTS in senior high 
school mathematics learning. 

Furthermore, the quality of instructional materials used 
in mathematics education is another critical factor influencing 

HOTS development. Fricke and Reinisch [25] emphasize 
explicitly representing cognitive-epistemic systems within 
learning materials to support students' higher-order thinking. 
Similarly, Stylianides & Stylianides [26] argue that tasks that 
encourage justification, argumentation, and abstraction are 
necessary to stimulate higher-order reasoning in mathematics. 
Therefore, this study also incorporates the development of 
well-designed instructional materials that align with and 
reinforce metacognitive strategies as a foundational part of 
the intervention. 

Finally, teacher-related factors play a crucial role in 
supporting HOTS development. Khadka et al. [27] highlight 
that a humanistic teaching approach characterized by fairness, 
teacher enthusiasm, and moral support positively impacts 
students’ mathematical achievement. This is echoed by Nind 
et al. [28], who emphasize the need for emotionally 
responsive pedagogy in supporting deep learning and 
engagement. Thus, the effectiveness of any instructional 
intervention, including metacognitive training, must be 
considered within the broader ecological context of teacher-
student interactions and the socio-emotional climate of the 
classroom. 

The fundamental purpose of this survey is to explore the 
extent to which implementing metacognitive strategy 
interventions can enhance students’ HOTS in mathematics. 
The central hypothesis to be tested is that students who 
receive metacognitive strategy training will demonstrate 
significantly greater improvements in HOTS scores from pre-
test to post-test, compared to those in the control group. This 
hypothesis builds upon the theoretical foundations of 
metacognition and the practical need for evidence-based 
interventions to address persistent shortcomings in 
mathematics education outcomes. 
 

2. LITERATURE REVIEW 

2.1. The Concept of Metacognition in Learning 

Metacognition refers to individuals' ability to be aware of, 
regulate, and reflect upon their cognitive processes [10]. 
Flavell [8] delineated metacognition into two key elements: 
metacognitive knowledge and metacognitive regulation. 
Metacognitive knowledge includes awareness of personal 
variables, task characteristics, and learning strategies. In 
contrast, metacognitive regulation involves planning, 
monitoring, and evaluating learning strategies. 

This framework was further developed by Zimmerman 
[29] through the self-regulated learning (SRL) model, which 
comprises three phases: forethought (planning and goal 
setting), performance (monitoring and control during task 
execution), and self-reflection (post-task evaluation). The SRL 
model provides a robust foundation for understanding how 
learners can independently and reflectively manage their 
learning processes. Fogarty [30] emphasized that 
metacognitive regulation follows a sequential process: 
strategy planning before engaging in a task, monitoring during 
task execution, and evaluating outcomes to support 
continuous improvement. This sequence is particularly critical 
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in competency-based learning environments and in improving 
HOTS. 

In the context of collaborative learning, Qiao et al. [31] 
expanded the concept of metacognition by introducing a 
three-level approach: individual, interpersonal, and group. At 
the personal level, learners regulate their cognitive activities. 
At the interpersonal level, they exchange strategies and offer 
mutual support. At the group level, collective coordination is 
emphasized when accomplishing shared tasks. Longitudinal 
studies indicate that skills in evaluation and monitoring tend 
to develop more slowly than planning abilities, underscoring 
the need for early and continuous metacognitive scaffolding 
[32], [33]. 
 
2.2. Metacognitive Interventions in Mathematics 

A study conducted by Kusaka and Ndihokubwayo [34] on 
grades 3 to 5 in Rwanda revealed that metacognitive 
strategies significantly contributed to students’ success in 
solving mathematical word problems. Learners who scored 
highly in metacognitive aspects demonstrated greater success, 
particularly when selecting and implementing problem-
solving strategies. The strategies employed included 
articulating logical reasoning, constructing tables or diagrams, 
and utilizing visualizations to monitor their cognitive 
processes. The assessment instrument in this study adapted a 
rubric based on Polya’s [35] problem-solving model, which 
consists of four main stages: understanding the problem, 
devising a strategy, executing the plan, and reviewing the 
solution. 

While most students exhibited adequate planning skills, 
the study found that their abilities to monitor their thought 
processes and evaluate their outcomes remained relatively 
underdeveloped. This developmental disparity suggests that 
younger students require explicit instructional support, 
especially in recognizing errors and reflecting on the strategies 
they employed. These findings align with Veenman et al. [33], 
who argued that monitoring and evaluation skills tend to 
develop more slowly than planning abilities, thus necessitating 
structured and direct instruction. 

Montague [36] further demonstrated that explicit 
instruction integrating metacognitive strategies systematically 
can substantially improve students' problem-solving 
capabilities in mathematics. She developed the Strategic Math 
Instruction (SMI) approach, which emphasizes direct teaching 
of cognitive strategies through think-aloud modeling, 
scaffolding, and repeated guided practice accompanied by 
structured reflection. This intervention proved particularly 
effective in enhancing students' mathematical performance 
with learning difficulties. 

Dignath and Büttner [37], through a meta-analysis of 48 
experimental studies at the primary and secondary school 
levels, found that explicitly taught metacognitive strategies 
significantly positively impacted students’ academic 
achievement. They emphasized that the effectiveness of 
metacognitive interventions increases when the strategies are 
embedded within authentic tasks and tailored to students’ 
developmental characteristics. Similarly, Zohar and Peled [38] 
asserted that elementary school students can develop HOTS, 

including reflective and strategic thinking, when consistently 
exposed to metacognitive training. 

Additionally, research by Kramarski and Mevarech [17] 
reinforced the importance of metacognition-based 
instructional approaches in mathematics education at the 
primary level. They introduced the IMPROVE model 
(Introducing new material, Metacognitive questioning, 
Practicing, Reviewing, obtaining mastery, Verification, and 
Enrichment), which enhanced conceptual understanding, 
problem-solving, and self-regulation skills. This model 
emphasizes metacognitive questioning—such as “What do I 
understand?”, “What alternative strategies can I use?”, and 
“How do I know my answer is correct?”—to directly foster 
students’ monitoring and evaluation processes within 
mathematical contexts. 

A longitudinal study by Kuhn and Dean [39] also 
demonstrated that reflective and metacognitive thinking skills 
can be cultivated early through explicit practice in 
constructing arguments, comparing alternative solutions, and 
evaluating claims. They highlighted that learning 
environments encouraging students to question and assess 
their thinking are far more effective than conventional one-
directional instructional approaches. 

Metacognitive interventions are not limited to primary 
and secondary education; they have also been widely 
implemented in higher education and various academic 
disciplines. In tertiary education, hypermedia-based 
technologies and strategic feedback have significantly 
enhanced students’ meta-comprehension accuracy and 
knowledge transfer abilities. Azevedo and Hadwin [40] 
emphasized that the effectiveness of such interventions 
hinges on how well learning systems facilitate students in 
independently planning, monitoring, and evaluating their 
learning processes. Interventions such as metacognitive 
prompting and progress tracking through interactive logs have 
been found to foster reflective engagement and improve the 
quality of conceptual understanding among university 
students [12]. 

In health education, Sujatmika et al. [41] developed a 
critical thinking assessment instrument focused on the human 
circulatory system. This instrument was validated using the 
Rasch model to ensure item reliability and construct validity. 
The analysis revealed that the self-regulation subcomponent 
was the weakest among the measured indicators of critical 
thinking. These findings suggest that despite students' 
adequate factual knowledge and conceptual understanding, 
they still require more systematic training in metacognitive 
aspects to strengthen their internal control over learning 
strategies and problem-solving processes in health-related 
contexts. 

In the field of clinical psychology, the Metacognitive 
Training for Eating Disorders (MCT-ED) program, 
implemented among adolescents with anorexia nervosa, 
yielded positive outcomes in enhancing cognitive flexibility 
and reducing tendencies toward maladaptive perfectionism 
[42]. However, the effects of this intervention were not 
sustained long-term and tended to diminish after three 
months without reinforcement sessions. This highlights the 
need for metacognitive training to be designed as an ongoing 



The Impact of Metacognitive Strategy Training on Higher-Order Thinking Skills (HOTS) in High School Mathematics: A Quasi-Experimental Study  

149 

process rather than a one-time intervention. Grant [43] further 
reinforced this notion by asserting that meaningful changes in 
mindset and self-regulatory strategies require consistent 
support to become deeply embedded in everyday behavior. 
 
2.3. Technology-Based and Innovative Approaches 

Hypermedia-based learning environments have emerged as 
effective platforms for facilitating the development of students’ 
metacognitive skills. A study by Wang et al. [44] demonstrated 
that the combination of metacognitive prompts and external 
feedback significantly enhances students’ metacognitive 
accuracy, particularly in the dimensions of judgment of 
learning (self-assessment of understanding) and the ability to 
transfer knowledge to new contexts. Metacognitive prompts 
serve as internal cues that encourage reflection on learning 
strategies, while external feedback helps correct self-
assessment biases and strengthens the connection between 
cognitive processes and learning outcomes. These findings are 
consistent with the framework proposed by Azevedo and 
Hadwin [40] on technology-supported self-regulated learning, 
which underscores the importance of external scaffolding 
during the initial stages of autonomous learning. 

The Stepping Stones program exemplifies a practical 
application of this model [45]. This program trains elementary 
school teachers to integrate metacognitive strategies into 
mathematics instruction through a fading scaffold approach. 
Initially, teachers are provided with explicit supports such as 
instructional scripts, worked examples, and curated lists of 
prompts. Over time, these supports are gradually withdrawn 
to encourage teacher autonomy in designing instructional 
strategies tailored to their students’ needs. Classroom 
observations indicated a remarkably high implementation 
rate of metacognitive strategy, ranging from 93% to 100%, 
including goal sharing, small group discussions in mixed-trio 
formats, and using worked examples as collaborative 
exploration tools. 

Moreover, teachers who participated in the training 
reported substantial improvements in their conceptual 
understanding of metacognition and increased confidence in 
delivering mathematics problem-solving instruction 
reflectively and strategically. These improvements suggest 
that enhancing teacher capacity in adopting metacognitive 
approaches transforms instructional practices and 
strengthens teacher self-efficacy, which, according to Bandura 
[46], directly influences instructional effectiveness. 

These findings align with the meta-analysis by Dignath 
and Büttner [37], which revealed that teacher training in self-
regulated learning and metacognitive strategies significantly 
positively impacts student learning outcomes at both primary 
and secondary levels. Furthermore, Hattie [47], in his synthesis 
of over 800 meta-analyses, identified metacognitive strategy 
instruction as one of the ten most effective educational 
interventions, with a substantial effect size (d = 0.69). 
Programs like Stepping Stones underscore the critical role of 
pedagogical content knowledge in teacher professional 
development [48]. Teachers must possess a deep 
understanding of mathematical content and the pedagogical 
expertise to teach it in ways that concurrently foster students’ 

cognitive and metacognitive development. Within this context, 
strategies such as reflective questioning, self-explanation, and 
progress monitoring tools constitute essential components of 
metacognitively informed mathematics instruction. 
 
2.4. Assessing Higher-Order Thinking Skills (HOTS) in 

Mathematics 

Higher-order thinking skills (HOTS) in the context of 
mathematics education reflect students' abilities to apply 
mathematical knowledge to analyze problems, evaluate 
solutions, and generate original strategies. HOTS go beyond 
procedural mastery and encompass reflective, critical, logical, 
and creative thinking skills essential for solving non-routine 
and complex tasks [3], [49]. The revised Bloom’s Taxonomy by 
Anderson and Krathwohl [50] categorizes HOTS into the three 
highest cognitive domains: analysis, evaluation, and creation. 
At the analysis level, students are expected to deconstruct 
information, identify relationships among components, and 
recognize patterns. The evaluation level involves making 
judgments based on logical or argumentative criteria. In 
contrast, the creation level requires students to develop new 
solutions, construct models, or devise novel approaches not 
previously taught. 

Effective measurement of HOTS in mathematics 
demands the development of diagnostic instruments that are 
psychometrically valid. In their systematic review, Kania & 
Kusumah [51] recommended that such instruments should 
address both cognitive and psychological dimensions and be 
validated using the Rasch model to ensure the reliability and 
interpretive accuracy of the data. The Rasch model provides 
detailed insights into item functioning, difficulty levels, and the 
consistency of students’ responses across HOTS indicators 
[52], [53]. Assessment tools considered adequate for 
measuring HOTS include open-ended problems, real-world 
contextualized tasks, and performance-based assessments 
that require students to explore alternative strategies. The use 
of analytic rubrics incorporating metacognitive indicators such 
as strategy justification, solution reflection, and elaboration of 
alternative approaches has also proven effective in capturing 
the depth of students’ HOTS performance [54]. 

An effective HOTS assessment instrument must be 
capable of distinguishing students’ levels of cognitive 
processing while also providing teachers with insights into 
appropriate follow-up interventions. Therefore, the design of 
such assessments should be grounded in the principles of 
construct validity, ensuring that the instrument accurately 
measures the targeted HOTS. Moreover, robust data analysis 
techniques—such as Item Response Theory (IRT) or the Rasch 
model—are essential for developing reliable and informative 
measurement tools. These methods enable a deeper 
understanding of item functioning and student response 
patterns, thereby enhancing the interpretability and 
diagnostic utility of the assessment [55]. 
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3. MATERIAL AND METHODS 

3.1. Research Design and Participant Demographics 

This study used a quasi-experimental design with a pretest-
posttest control group to investigate the effectiveness of 
structured metacognitive strategy training in enhancing HOTS 
in mathematics among high school students. The sample 
consisted of 72 students (36 in the experimental group and 36 
in the control group) drawn from two comparable Grade 11 
classes at a public high school in South Sulawesi, Indonesia.  

The metacognitive training incorporated three core 
elements: planning (goal-setting, task analysis), monitoring 
(self-questioning, tracking progress), and evaluating (error 
analysis, reflection). Weekly sessions were 90 minutes each, 
combining guided instruction, group discussions, and 
reflective exercises. Instructional materials included problem-
solving worksheets, metacognitive checklists, and structured 
reflection journals. The control group followed the standard 
national curriculum without additional metacognitive 
instructions. 

 

Figure 1. Research Flow Diagram 

 
Figure 1 illustrates the research flow, showing random 

group allocation, pre-test administration, intervention 
implementation over one semester, and post-test 
measurement. The pre-test was conducted to assess baseline 
HOTS, followed by a 16-week intervention for the 
experimental group and standard instruction for the control 
group. Participants were selected using cluster random 
sampling, with intact classes randomly assigned to either the 
experimental or control group. Table 1 presents detailed 
demographic characteristics, including age, gender, and 
previous academic performance in mathematics. 

 
Table 1. Demographic of Respondents Summary (N=72) 

 Experimental Group (n=36) Control Group (n=36) 

Frequency Percentage Frequency Percentage 

Age 16 years 24 66.67% 21 58.33%  
17 years 9 25.00% 10 27.78%  
18 years 3 8.33% 5 13.89% 

Gender Male 16 44.44% 17 47.22%  
Female 20 55.56% 19 52.78% 

Prior Math Achievement 

  

High (>84) 11 30.56% 9 25.00% 

Medium (70–84) 19 52.78% 20 55.56% 

Low (<70) 6 16.67% 7 19.44% 

 
The respondents' demographics (N = 72) were 

distributed between the experimental and control groups (n = 
36). Most students were 16 years old, comprising 66.67% of 
the experimental group and 58.33% of the control group, 
followed by smaller proportions aged 17 and 18. Gender 
distribution was relatively balanced, with males representing 
44.44% in the experimental group and 47.22% in the control 
group. Regarding prior mathematics achievement, most 
students in both groups were categorized as having medium 
performance (70–84), accounting for 52.78% of the 
experimental group and 55.56% of the control group. High 
achievers (>84) and low achievers (<70) were similarly 
represented across both groups. These distributions suggest 
comparable baseline characteristics between the two groups 
regarding age, gender, and academic background. 

 
3.2. Instrument 

Metacognitive awareness was measured using the 
Metacognitive Awareness Inventory (MAI), a widely 
recognized self-report instrument developed initially by 
Schraw and Dennison [10] to assess individuals’ awareness 

and regulation of their cognitive processes. In the context of 
secondary education, the MAI was adapted to suit the 
cognitive developmental level and linguistic proficiency of 
high school students. This adaptation involved simplifying the 
language to enhance comprehensibility while preserving the 
instrument’s conceptual integrity, reducing the number of 
items for age appropriateness, and contextualizing the 
statements to align with tasks commonly encountered in the 
high school curriculum—particularly those related to reading 
comprehension and mathematical problem-solving. 
 
Table 2. Knowledge of Cognition (10 items) 

No Statement 

1 I know the most effective learning strategies for 
understanding mathematics. 

2 I know which math concepts I understand and which ones I 
still need to work on. 

3 I know when to use a specific formula or strategy to solve a 
math problem. 

4 I understand the procedural steps needed to solve math 
problems. 
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No Statement 

5 I know when to use diagrams, tables, or models to help me 
solve math problems. 

6 I know when I should calculate manually or use a 
calculator. 

7 I can explain why I chose a specific method to solve a 
problem. 

8 I know which types of math problems require extra 
attention. 

9 I know what I need to review before a math exam. 

10 I can connect one math concept to another. 

 
Table 3. Regulation of Cognition (20 items) 

No Statement 

11 Before solving a math problem, I set clear learning goals. 

12 I make a step-by-step plan before working on a math 
problem. 

13 While working on a problem, I check whether I follow my 
initial plan. 

14 If I find a problem difficult, I try a different strategy. 

15 After solving a problem, I review how I approached it. 

16 When I get a question wrong, I try to figure out why. 

17 I use notes or formulas I have memorized to help solve 
problems. 

18 I often ask myself whether my method is correct while 
solving problems. 

19 I assess my understanding after learning a new math topic. 

20 I compare my answers with the answer key to find my 
mistakes. 

21 I judge whether my answer makes sense. 

22 I manage my time efficiently during math tests. 

23 I pay special attention to word problems or real-life context 
questions. 

24 I keep track of common mistakes to avoid repeating them. 

25 I summarize or make concept maps after studying math 
material. 

26 When studying, I try to explain math concepts in my own 
words. 

27 I make sure I fully understand the problem before I start 
solving it. 

28 I evaluate my math learning strategies after getting my test 
results. 

29 I adjust my study approach if I am unsatisfied with my 
previous results. 

30 I ensure I understand the objective of each math task or 
exercise. 

 
The adapted instrument showed strong internal 

consistency, with a Cronbach’s alpha coefficient of 0.82, 
indicating reliability for assessing students’ metacognitive 
awareness and their HOTS in mathematics. All items were 
rated using a 5-point Likert scale (1 = Strongly Disagree to 5 = 
Strongly Agree). This format enabled quantitative analysis of 

students’ self-perceived metacognitive behaviors across both 
knowledge of cognition and regulation of cognition domains. 

 
3.3. Data Analysis and Statistical Assumptions 

The data were analyzed using Analysis of Covariance 
(ANCOVA) in SPSS to compare post-test scores between 
groups while statistically controlling for differences in pre-test 
scores. Before the analysis, essential statistical assumptions 
were tested within SPSS, including normality of data 
distribution, homogeneity of variances (Levene’s Test), and 
homogeneity of regression slopes. The homogeneity of 
regression slopes, in particular, was assessed to ensure that 
the relationship between the covariate (pre-test scores) and 
the dependent variable (post-test scores) was consistent 
across groups. All assumptions were met, supporting the use 
of ANCOVA as a valid and robust method for examining the 
intervention’s effectiveness. 
 

4. RESULTS 

4.1. Descriptive of Mathematics HOTS 

Table 4 presents the descriptive statistics for students' HOTS 
in mathematics, including pre-test scores, post-test scores, 
and normalized gain (N-gain) for both the experimental and 
control groups. 
 
Table 4. Descriptive Summary of Mathematics HOTS Scores 

Group  N Min. Max. Mean Std. Dev. 

Pre-Test Control  36 24 90 58.72 18.767 

Pre-Test Experimental  36 24 90 58.78 18.262 

Post-Test Control  36 50 95 74.64 11.090 

Post-Test Experimental  36 60 100 85.64 9.187 

N-gain Control  36 -0.36 0.83 0.336 0.271 

N-gain Experimental  36 0.35 1.00 0.669 0.183 

Valid N 36     

 
The pre-test mean scores were nearly identical between 

the two groups, with the control group scoring an average of 
58.72 (SD = 18.767) and the experimental group scoring 
58.78 (SD = 18.262), indicating comparable baseline HOTS 
performance before the intervention. However, post-test 
results showed a notable increase in the experimental group’s 
mean score to 85.64 (SD = 9.187), compared to 74.64 (SD = 
11.090) in the control group. This suggests a greater 
improvement in HOTS among students who received the 
metacognitive intervention. 

Furthermore, the normalized gain (N-gain) scores 
reinforce this trend. The experimental group achieved a higher 
mean N-gain of 0.6689 (SD = 0.18277), while the control 
group obtained a lower mean of 0.3361 (SD = 0.27079). These 
results indicate that the intervention effectively enhanced 
students' HOTS in mathematics, as evidenced by the absolute 
post-test scores and the relative learning gains. 
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4.2. Normality Test  

Table 5 presents the results of normality testing for pre-test, 
post-test, and N-gain scores using the Kolmogorov-Smirnov 
and Shapiro-Wilk tests for the control and experimental 
groups. These tests were conducted to examine whether the 
data met the assumption of normal distribution required for 
parametric statistical analysis. Conversely, water quality has 
been adversely impacted, as shown by a marked increase in 

nutrient concentrations. Specifically, Total Kjeldahl Nitrogen 
(TKN) levels rose from 7.42 mg/L to 19.02 mg/L, and total 
phosphorus increased from 0.22 mg/L to 0.46 mg/L after the 
project. While the introduction of Best Management Practices 
(BMPs) achieved a moderate reduction of nutrient 
concentrations (38%), these interventions were insufficient to 
restore sediment delivery or fully address the increase in 
nutrient loading.

 
Table 5. Tests of Normality 

Group 
Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Pre-test Control Group 0.153 36 0.033 0.951 36 0.114 

Experimental Group 0.153 36 0.032 0.950 36 0.103 

Post-test Control Group 0.209 36 0.000 0.947 36 0.085 

Experimental Group 0.159 36 0.023 0.940 36 0.051 

N-gain Control Group 0.140 36 0.070 0.947 36 0.083 

Experimental Group 0.164 36 0.016 0.944 36 0.069 

a. Lilliefors Significance Correction 

 

Table 6. Homogeneity Test 

 Levene Statistic df1 df2 Sig. 

Pre-test Based on Mean 2.099 1 70 0.152 

Based on Median 2.371 1 70 0.128 

Based on Median and with adjusted df 2.371 1 64.610 0.128 

Based on the trimmed mean 2.131 1 70 0.149 

Post-test Based on Mean 0.526 1 70 0.471 

Based on Median 0.279 1 70 0.599 

Based on Median and with adjusted df 0.279 1 69.717 0.599 

Based on the trimmed mean 0.546 1 70 0.462 

 
Based on the Shapiro-Wilk test, which is generally more 

appropriate for small to moderate sample sizes, all variables 
in both groups yielded p-values greater than 0.05, indicating 
that the data distributions did not significantly deviate from 
normality. Specifically, the pre-test scores showed non-
significant results in both groups (p = 0.114 for control; p = 
0.103 for experimental), and the post-test scores were also 
within acceptable thresholds (p = 0.085 and 0.051, 
respectively). Although some Kolmogorov-Smirnov results 
showed significance below 0.05, particularly in the post-test 
data, this test is more sensitive to minor deviations in larger 
samples and tends to overestimate non-normality. The 
normality assumption was considered to be met based on the 
Shapiro-Wilk test, thereby supporting parametric analyses 
such as ANCOVA in subsequent hypothesis testing. 

 
4.3. Homogeneity of Variance Test 

Table 6 presents the results of Levene’s Test for Equality of 
Variances, which examined the homogeneity of variances—a 
key assumption for performing ANCOVA. The analysis was 
performed on pre-test and post-test scores using various 

central tendency measures, including the mean, median, 
trimmed mean, and adjusted degrees of freedom. 

The Levene statistic based on the mean yielded a p-value 
of 0.152 for the pre-test scores, while the median-based and 
trimmed mean results also showed non-significant values (p = 
0.128 and p = 0.149, respectively). Similarly, for the post-test 
scores, all test variations produced p-values well above the 
alpha level of 0.05, with the Levene statistic based on the 
mean yielding p = 0.471. These findings indicate that the 
assumption of homogeneity of variances was satisfied for both 
pre-test and post-test scores across the control and 
experimental groups. Therefore, it can be concluded that there 
were no significant differences in variance between groups, 
allowing for the use of parametric procedures such as 
ANCOVA in subsequent analyses. 

 
4.4. ANCOVA Test Results 

Table 7 displays the results of the Analysis of Covariance 
(ANCOVA) conducted to examine the treatment (group) effect 
on students’ post-test scores in mathematics HOTS, while 
controlling for pre-test scores. 
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The analysis revealed a statistically significant effect of 
group membership on post-test scores after controlling for 
pre-test performance, F (1.69) = 44.360, p<0.001, indicating 
that the experimental intervention substantially impacted 
students’ HOTS. The partial eta squared value of 0.391 reflects 
a large effect size, with approximately 39.10% of the variance 
in post-test scores attributed to the treatment beyond the 
influence of pre-test scores. The covariate (pre-test) was also 
a significant predictor, F (1.69) = 79.443, p<0.001, with a 

partial eta squared of 0.535, suggesting that students' initial 
HOTS levels strongly influenced post-intervention 
performance. Overall, the ANCOVA model was highly 
significant, F (2.69) = 61.992, p<0.001, with R² = 0.642 and 
adjusted R² = 0.632, indicating that the model accounted for 
approximately 64.20% of the variance in post-test scores. 
These findings prove that the metacognitive intervention 
effectively enhanced students’ HOTS in mathematics. 

 
Table 7. Tests of Between-Subjects Effects  

Source Type III Sum of Squares df Mean Square F Sig. Partial η Squared 

Corrected Model 6062.618a 2 3031.309 61.992 0.000 0.642 

Intercept 20243.388 1 20243.388 413.988 0.000 0.857 

Pre-test 3884.618 1 3884.618 79.443 0.000 0.535 

Group 2169.153 1 2169.153 44.360 0.000 0.391 

Error 3373.993 69 48.898    

Total 471838.000 72     

Corrected Total 9436.611 71     

Dependent Variable: Post-test   
aR-Squared = 0.642 (Adjusted R Squared = 0.632) 

 
Table 8. Independent Samples Test 

  Levene's Test t-test for Equality of Means 

  
F Sig. t df Sig. Mean Std. Error 

95% Confidence Interval 

  Lower Lower 

N-gain Equal variances assumed 3.960 0.051 -6.110 70 0.000 -0.333 0.055 -0.441 -0.224 

Equal variances not assumed   -6.110 61.409 0.000 -0.333 0.055 -0.442 -0.224 

 
4.5. Independent Samples t-Test for N-Gain Scores 

Table 8 presents the results of an independent samples t-test 
conducted to compare the N-gain scores between the 
experimental and control groups. Before the t-test, Levene’s 
Test for Equality of Variances was performed to assess the 
assumption of homogeneity of variances. The result was 
insignificant (F = 3.960, p = 0.051), indicating that the 
assumption of equal variances was met at the 0.05 
significance level. 

Based on the equality of variances assumption, the t-test 
showed a significant difference in N-gain scores between 
groups, t (70) = -6.110, p < .001, with a mean difference of -
0.333 (SE = 0.05445) and a 95% confidence interval from -
0.441 to -0.224. The negative mean difference indicates that 
the experimental group outperformed the control group, as 
higher N-gain scores reflect greater learning improvement. 
These results provide strong statistical evidence that the 
metacognitive intervention significantly positively impacted 
students' learning gains in mathematics, supporting its 
effectiveness in enhancing HOTS compared to conventional 
instruction. 
 
4.6. One-Sample t-Test for N-Gain (Experimental) 

Table 9 presents the results of the one-sample t-test. This 
analysis determined whether the experimental group's mean 

N-gain score differed significantly from a benchmark value of 
0.3, representing a moderate learning gain commonly used in 
educational research as a reference point. 
 
Table 9. One-Sample Test (Experimental) 

 

Test Value = 0.3 

t df Sig. Mean 

95% Confidence 
Interval 

Lower Upper 

N-gain  12.109 35 0.000 0.369 0.307 0.431 

 
The one-sample t-test yielded a t-value of 12.109 (df = 

35, p < .001), showing that the experimental group’s mean N-
gain score (M = 0.369) was significantly higher than the 
benchmark value of 0.3. The 95% confidence interval (0.307 
to 0.431) further supports the statistical and practical 
significance of the result. These findings indicate that the 
experimental group’s learning gains exceeded the moderate 
threshold by a meaningful margin, reinforcing the 
effectiveness of the metacognitive intervention in improving 
students’ mathematics learning outcomes. 
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4.7. Scatter Plot Analysis  

Figure 2 illustrates the scatter plot of pre-test and post-test 
scores for the control and experimental groups. Regression 
analysis examined the relationship between students’ initial 
performance and outcomes after the intervention. 
 

 

Figure 2. Scatter Plot of Pre-Test and Post-Test Scores  

 
The regression analysis showed that the experimental 

group had a higher intercept (y = 73.64 + 0.24x, R² = 0.294) 
compared to the control group (y = 60.12 + 0.27x, R² = 0.341), 
indicating that, despite the control group explaining slightly 
more variance, students in the experimental group 
consistently achieved higher post-test scores at similar pre-
test levels. This suggests that the observed improvements 
were not solely due to prior ability but were significantly 
influenced by the metacognitive intervention, providing 
strong evidence of its effectiveness in enhancing student 
learning outcomes. 
 

5. DISCUSSIONS 

The main finding of this study is that a structured 
metacognitive strategy training program implemented over 
one academic semester resulted in statistically and practically 
significant improvements in high school students’ HOTS in 
mathematics learning. The experimental group that received 
the intervention demonstrated consistent and substantial 
gains in test scores compared to the control group. This 
indicates that metacognitive training can serve as a practical 
pedagogical approach for enhancing higher-order thinking in 
the context of secondary mathematics education. 

The results of this study strongly support the 
metacognitive theory introduced by Flavell [8], which defines 
metacognition as the awareness and regulation of one’s 
cognitive processes. The three core components of 
metacognition, planning, monitoring, and evaluating, formed 
the foundation of the training provided to the experimental 
group and were shown to contribute significantly to the 
development of HOTS. Training focused on planning 
encouraged students to design problem-solving strategies 
before initiating tasks. For example, using “Problem-Solving 
Plan” worksheets, students were guided to anticipate solution 

steps and identify potential challenges. This form of 
engagement aligns with Paris & Winograd [56], who 
emphasize the critical role of planning in activating effective 
learning strategies. The monitoring component enabled 
students to track and assess their understanding throughout 
the problem-solving process. Techniques such as self-
questioning and self-explanation were employed to help 
students identify gaps in their knowledge. As noted by 
Moshman [57], monitoring plays a crucial role in detecting 
comprehension failures and adapting learning strategies in 
real time. 

The evaluation phase involved reflecting on the learning 
process and outcomes, enhancing metacognitive awareness, 
and promoting learning transfer [58]. Practical evaluation also 
supports forming more stable mental models of abstract 
mathematical concepts, facilitating sustained HOTS 
development. The intervention is also consistent with 
Zimmerman’s (2000) Self-Regulated Learning (SRL) model, 
which conceptualizes learning as a three-phase cycle: 
forethought, performance, and self-reflection [59]. Applying 
SRL explicitly within mathematics contexts helped students 
develop cognitive autonomy, which fostered intrinsic 
motivation and self-efficacy [60]–[62]. 

Furthermore, the role of metacognition in mathematics 
learning has been confirmed by numerous studies showing 
that students with high metacognitive awareness are better at 
solving non-routine problems and grasping the conceptual 
structure of mathematics [62]–[66]. In this sense, 
metacognition supports cognitive processes and bridges 
strategic thinking with mathematical decision-making. 
Integrating these metacognitive components in the 
intervention demonstrates that metacognition is not merely a 
supportive element in learning but a foundational condition 
for developing HOTS [33], [67]. This further strengthens the 
argument that HOTS can be cultivated systematically through 
strategy-based instruction, rather than through increased 
content exposure. 

These findings are consistent with the meta-analysis by 
Dignath & Büttner [37], which concluded that metacognitive 
instruction significantly positively affects mathematics 
achievement across educational levels. However, this study 
extends prior work by explicitly focusing on the development 
of HOTS, including analysis, synthesis, and evaluation, rather 
than general academic performance or procedural skills [49], 
[50]. The intervention model used in this study was explicitly 
structured, addressing previous criticisms such as those by 
Veenman et al. [33], who noted a lack of clarity in how 
metacognitive strategies are implemented in many empirical 
studies. 

In a broader context, this research aligns with findings 
from Wang et al. [12], who demonstrated that monitoring 
strategies such as delayed Judgments of Learning (JOL) 
significantly enhance metacognitive accuracy and retention, 
particularly when engaging with complex material. Such 
methods allow learners to reflect on their understanding 
before measuring learning progress, which is highly relevant 
in mathematics education, which demands conceptual 
precision and logical reasoning. JOL-based strategies have 
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been shown to improve students’ readiness to engage with 
HOTS-type problems more reflectively and strategically [68]. 

A study by Balzan et al. [69] on adolescents with anorexia 
nervosa adds a cross-domain perspective, revealing that 
metacognitive training not only enhances cognitive flexibility 
but also reduces maladaptive perfectionism. These two traits 
are frequently observed in mathematics learning 
environments, where the pressure to “always be right” can 
inhibit students’ willingness to explore alternative solutions. 
These findings support the notion that HOTS development 
must address cognitive and affective aspects of learning [70]. 

Moreover, the present findings relate closely to August et 
al. [71], who implemented a visual-linguistic approach to 
support academic language development and mathematical 
comprehension among English as an Additional Language 
(EAL) students. This strategy shares similarities with 
metacognitive interventions, as both aim to clarify students’ 
cognitive representations, especially when working with 
technical terms and complex procedures. In another relevant 
study, Fowler et al. [18] found that guided autonomy in a 
virtual maker space environment fostered creativity and 
spatial reasoning—two skills closely aligned with HOTS in 
geometry and mathematical modeling. 

Collectively, the findings of this study not only confirm 
the effectiveness of metacognitive interventions and place 
them within the broader framework of Self-Regulated 
Learning (SRL), where metacognition serves as the central 
engine [72]. However, it is essential to note that the success of 
such interventions does not occur in a vacuum. Their 
effectiveness may be moderated by students’ prior knowledge 
and task complexity [73], [74]. Therefore, this research's key 
contribution lies in reaffirming the general effectiveness of 
metacognitive strategies and refining their scope: 
demonstrating that a systematic and structured metacognitive 
approach can enhance higher-order thinking in mathematics. 
This enriches the literature by offering a replicable 
instructional design model that is theoretically grounded and 
pedagogically practical. 

 

6. CONCLUSION 

This study offers compelling empirical support for the 
effectiveness of explicit metacognitive strategy training in 
significantly improving HOTS in secondary school 
mathematics. The intervention fosters critical competencies 
such as analysis, evaluation, planning, and self-monitoring 
skills central to solving non-routine, multi-step problems in 
mathematics and beyond by equipping students with 
procedural knowledge and the ability to regulate and reflect 
on their cognitive processes. The results underscore a critical 
pedagogical shift: teaching students how to think is as 
essential as teaching them what to think. This cognitive 
empowerment enables learners to engage more deeply with 
mathematical content, transfer their thinking strategies across 
domains, and become autonomous problem solvers. Such 
skills are indispensable in 21st-century learning demands, 
particularly STEM disciplines requiring flexibility, innovation, 
and sustained cognitive effort. 
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