Water Disinfection Via Zinc Oxide (ZnO) Nanowires Chemically Fabricated on A Modified Polyurethane Substrate
Abstract
Nowadays, water contamination is a big issue due to concerns about health and water scarcity. Unfortunately, most water for human consumption is contaminated with various pathogenic microorganisms that cause water-related diseases. Most traditional chemical and physical disinfectants are energy- and time-intensive and prone to generating harmful disinfection by-products. The recent controversy about waterborne diseases and the safety of commonly used disinfection methods has renewed interest in other forms of disinfection. Low-cost, high-efficiency, and low-energy devices should be developed for potential water disinfection, enabling safe drinking water access. Recently, many researchers have been working on improving the scalability and economics of nanomaterial-based devices to overcome many of the limitations of using traditional anti-microbial agents. Herein, we develop a safe and efficient new nanomaterial decontamination device targeting bacteria in drinking water. Zinc Oxide (ZnO) Nanowires and polyurethane sponges were utilized as affordable and available materials that would lower the cost of the filtration device. The device is based on an electroporation method that applies a low voltage of ~6 V to inactivated bacteria in water. The performance of our device was optimized using different values of voltages, flow rates, microorganism concentrations, and various operation times. By relying on nanotechnology-enabled electroporation principles, this method aims to address the limitations of traditional techniques and offer a feasible solution, especially in areas grappling with contamination issues that lack water treatment infrastructure.
References
J. Bylund, J. Toljander, M. Lysén, N. Rasti, J. Engqvist, and M. Simonsson, “Measuring sporadic gastrointestinal illness associated with drinking water - An overview of methodologies,” J. Water Health, vol. 15, no. 3, pp. 321–340, 2017, doi: 10.2166/wh.2017.261.
S. Baruah, S. K. Pal, and J. Dutta, “Nanostructured Zinc Oxide for Water Treatment,” Nanosci. &Nanotechnology-Asia, vol. 2, no. 2, pp. 90–102, 2013, doi: 10.2174/2210681211202020090.
S. L. Loo, W. B. Krantz, A. G. Fane, Y. Gao, T. T. Lim, and X. Hu, “Bactericidal mechanisms revealed for rapid water disinfection by superabsorbent cryogels decorated with silver nanoparticles,” Environ. Sci. Technol., vol. 49, no. 4, pp. 2310–2318, 2015, doi: 10.1021/es5048667.
N. Koch, N. F. Islam, S. Sonowal, R. Prasad, and H. Sarma, “Environmental antibiotics and resistance genes as emerging contaminants: Methods of detection and bioremediation,” Curr. Res. Microb. Sci., vol. 2, p. 100027, 2021, doi: 10.1016/j.crmicr.2021.100027.
C. Liu et al., “Static electricity powered copper oxide nanowire microbicidal electroporation for water disinfection,” Nano Lett., vol. 14, no. 10, pp. 5603–5608, 2014, doi: 10.1021/nl5020958.
D. N. Magana-Arachchi and R. P. Wanigatunge, “Ubiquitous waterborne pathogens,” Waterborne Pathogens: Detection and Treatment. Elsevier, pp. 15–42, 2020, doi: 10.1016/B978-0-12-818783-8.00002-5.
M. Nisa, R. A. Dar, B. A. Fomda, and R. Nazir, “Combating food spoilage and pathogenic microbes via bacteriocins: A natural and eco-friendly substitute to antibiotics,” Food Control, vol. 149, p. 109710, 2023, doi: 10.1016/j.foodcont.2023.109710.
R. S. S. Wu, “Eutrophication, water borne pathogens and xenobiotic compounds: Environmental risks and challenges,” Mar. Pollut. Bull., vol. 39, no. 1–12, pp. 11–22, 1999, doi: 10.1016/S0025-326X(99)00014-4.
A. Saravanan, P. S. Kumar, S. Jeevanantham, S. Karishma, and A. R. Kiruthika, “Photocatalytic disinfection of micro-organisms: Mechanisms and applications,” Environ. Technol. Innov., vol. 24, p. 101909, 2021, doi: 10.1016/j.eti.2021.101909.
C. Chahal, B. van den Akker, F. Young, C. Franco, J. Blackbeard, and P. Monis, “Pathogen and Particle Associations in Wastewater: Significance and Implications for Treatment and Disinfection Processes,” Adv. Appl. Microbiol., vol. 97, pp. 63–119, 2016, doi: 10.1016/bs.aambs.2016.08.001.
World Health Organization and IWA, Water Treatment and Pathogen Control Guidelines. Iwa Publishing, 2004.
S. D. Richardson and C. Postigo, “Drinking Water Disinfection By-products,” Handb. Environ. Chem., vol. 20, pp. 93–137, 2012, doi: 10.1007/698_2011_125.
D. S. Lantagne, F. Cardinali, and B. C. Blount, “Disinfection by-product formation and mitigation strategies in point-of-use chlorination with sodium dichloroisocyanurate in Tanzania,” Am. J. Trop. Med. Hyg., vol. 83, no. 1, pp. 135–143, 2010, doi: 10.4269/ajtmh.2010.09-0431.
X. F. Li and W. A. Mitch, “Drinking Water Disinfection Byproducts (DBPs) and Human Health Effects: Multidisciplinary Challenges and Opportunities,” Environ. Sci. Technol., vol. 52, no. 4, pp. 1681–1689, 2018, doi: 10.1021/acs.est.7b05440.
H. Komulainen, “Experimental cancer studies of chlorinated by-products,” Toxicology, vol. 198, no. 1–3, pp. 239–248, 2004, doi: 10.1016/j.tox.2004.01.031.
S. D. Richardson, M. J. Plewa, E. D. Wagner, R. Schoeny, and D. M. DeMarini, “Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research,” Mutat. Res. - Rev. Mutat. Res., vol. 636, no. 1–3, pp. 178–242, 2007, doi: 10.1016/j.mrrev.2007.09.001.
A. A. Lanrewaju, A. M. Enitan-Folami, S. Sabiu, and F. M. Swalaha, “A review on disinfection methods for inactivation of waterborne viruses,” Front. Microbiol., vol. 13, p. 991856, 2022, doi: 10.3389/fmicb.2022.991856.
G. Gelete, H. Gokcekus, D. U. Ozsahin, B. Uzun, and T. Gichamo, “Evaluating disinfection techniques of water treatment,” Desalin. Water Treat., vol. 177, pp. 408–415, 2020, doi: 10.5004/dwt.2020.25070.
M. D. Gómez-López, J. Bayo, M. S. García-Cascales, and J. M. Angosto, “Decision support in disinfection technologies for treated wastewater reuse,” J. Clean. Prod., vol. 17, no. 16, pp. 1504–1511, 2009, doi: 10.1016/j.jclepro.2009.06.008.
B. S. Rathi, P. S. Kumar, and D. V. N. Vo, “Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment,” Sci. Total Environ., vol. 797, p. 149134, 2021, doi: 10.1016/j.scitotenv.2021.149134.
P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Mariñas, A. M. Mayes, and A. M. Mayes, “Science and technology for water purification in the coming decades,” Nanosci. Technol. A Collect. Rev. from Nat. Journals, vol. 452, no. 7185, pp. 337–346, 2009, doi: 10.1142/9789814287005_0035.
R. Saxena et al., “Microbes in drinking water: Control and prevention,” in Current Directions in Water Scarcity Research, vol. 6, Elsevier, 2022, pp. 203–222.
S. Jabeen, N. Ahmad, S. Bala, D. Bano, and T. Khan, “Nanotechnology in environmental sustainability and performance of nanomaterials in recalcitrant removal from contaminated Water,” Int. J. Nano Dimens., vol. 14, no. 1, pp. 1–28, 2023, doi: 10.22034/IJND.2022.1963262.2162.
K. K. Singh and K. K. Singh, “Role of Nanotechnology and Nanomaterials for Water Treatment and Environmental Remediation,” Int. J. New Chem., vol. 9, no. 3, pp. 165–190, 2022, [Online]. Available: https://www.ijnc.ir/article_248501.html.
A. Adewuyi and W. J. Lau, “Nanomaterial development and its applications for emerging pollutant removal in water,” in Handbook of Nanotechnology Applications: Environment, Energy, Agriculture and Medicine, Elsevier, 2020, pp. 67–97.
S. Thanigaivel, A. K. Priya, L. Gnanasekaran, T. K. A. Hoang, S. Rajendran, and M. Soto-Moscoso, “Sustainable applicability and environmental impact of wastewater treatment by emerging nanobiotechnological approach: Future strategy for efficient removal of contaminants and water purification,” Sustain. Energy Technol. Assessments, vol. 53, p. 102484, 2022, doi: 10.1016/j.seta.2022.102484.
T. Ahmed, S. Imdad, K. Yaldram, N. M. Butt, and A. Pervez, “Emerging nanotechnology-based methods for water purification: A review,” Desalin. Water Treat., vol. 52, no. 22–24, pp. 4089–4101, 2014, doi: 10.1080/19443994.2013.801789.
M. P. Ajith, M. Aswathi, E. Priyadarshini, and P. Rajamani, “Recent innovations of nanotechnology in water treatment: A comprehensive review,” Bioresour. Technol., vol. 342, p. 126000, 2021, doi: 10.1016/j.biortech.2021.126000.
S. Gelover, L. A. Gómez, K. Reyes, and M. Teresa Leal, “A practical demonstration of water disinfection using TiO2 films and sunlight,” Water Res., vol. 40, no. 17, pp. 3274–3280, 2006, doi: 10.1016/j.watres.2006.07.006.
D. Ren and J. A. Smith, “Retention and transport of silver nanoparticles in a ceramic porous medium used for point-of-use water treatment,” Environ. Sci. Technol., vol. 47, no. 8, pp. 3825–3832, 2013, doi: 10.1021/es4000752.
R. Kalaivani et al., “Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications,” Front. Lab. Med., vol. 2, no. 1, pp. 30–35, 2018, doi: 10.1016/j.flm.2018.04.002.
R. E. Morsi, A. M. Alsabagh, S. A. Nasr, and M. M. Zaki, “Multifunctional nanocomposites of chitosan, silver nanoparticles, copper nanoparticles and carbon nanotubes for water treatment: Antimicrobial characteristics,” Int. J. Biol. Macromol., vol. 97, pp. 264–269, 2017, doi: 10.1016/j.ijbiomac.2017.01.032.
T. Wang, H. Chen, C. Yu, and X. Xie, “Rapid determination of the electroporation threshold for bacteria inactivation using a lab-on-a-chip platform,” Environ. Int., vol. 132, p. 105040, 2019, doi: 10.1016/j.envint.2019.105040.
M. S. Venslauskas and S. Šatkauskas, “Mechanisms of transfer of bioactive molecules through the cell membrane by electroporation,” Eur. Biophys. J., vol. 44, no. 5, pp. 277–289, 2015, doi: 10.1007/s00249-015-1025-x.
M. Kandušer and D. Miklavčič, Electroporation in biological cell and tissue: An overview. Springer, 2008.
T. Batista Napotnik and D. Miklavčič, “In vitro electroporation detection methods – An overview,” Bioelectrochemistry, vol. 120, pp. 166–182, 2018, doi: 10.1016/j.bioelechem.2017.12.005.
L. Fojt, L. Strašák, V. Vetterl, and J. Šmarda, “Comparison of the low-frequency magnetic field effects on bacteria Escherichia coli, Leclercia adecarboxylata and Staphylococcus aureus,” Bioelectrochemistry, vol. 63, no. 1–2, pp. 337–341, 2004, doi: 10.1016/j.bioelechem.2003.11.010.
G. Beretta, A. F. Mastorgio, L. Pedrali, S. Saponaro, and E. Sezenna, “The effects of electric, magnetic and electromagnetic fields on microorganisms in the perspective of bioremediation,” Rev. Environ. Sci. Biotechnol., vol. 18, no. 1, pp. 29–75, 2019, doi: 10.1007/s11157-018-09491-9.
C. Liu et al., “Conducting nanosponge electroporation for affordable and high-efficiency disinfection of bacteria and viruses in water,” Nano Lett., vol. 13, no. 9, pp. 4288–4293, 2013, doi: 10.1021/nl402053z.
J. A. Rojas-Chapana, M. A. Correa-Duarte, Z. Ren, K. Kempa, and M. Giersig, “Enhanced introduction of gold nanoparticles into vital acidothiobacillus ferrooxidans by carbon nanotube-based microwave electroporation,” Nano Lett., vol. 4, no. 5, pp. 985–988, 2004, doi: 10.1021/nl049699n.
J. Zhou, T. Wang, C. Yu, and X. Xie, “Locally enhanced electric field treatment (LEEFT) for water disinfection,” Front. Environ. Sci. Eng., vol. 14, no. 5, pp. 397–403, 2020, doi: 10.1007/s11783-020-1253-x.
Z. Y. Huo, X. Xie, T. Yu, Y. Lu, C. Feng, and H. Y. Hu, “Nanowire-Modified Three-Dimensional Electrode Enabling Low-Voltage Electroporation for Water Disinfection,” Environ. Sci. Technol., vol. 50, no. 14, pp. 7641–7649, 2016, doi: 10.1021/acs.est.6b01050.
J. Zhou, C. Yu, T. Wang, and X. Xie, “Development of nanowire-modified electrodes applied in the locally enhanced electric field treatment (LEEFT) for water disinfection,” J. Mater. Chem. A, vol. 8, no. 25, pp. 12262–12277, 2020, doi: https://doi.org/10.1039/D0TA03750H.
D. T. Schoen, A. P. Schoen, L. Hu, H. S. Kim, S. C. Heilshorn, and Y. Cui, “High speed water sterilization using one-dimensional nanostructures,” Nano Lett., vol. 10, no. 9, pp. 3628–3632, 2010, doi: 10.1021/nl101944e.
T. Kotnik, W. Frey, M. Sack, S. Haberl Meglič, M. Peterka, and D. Miklavčič, “Electroporation-based applications in biotechnology,” Trends Biotechnol., vol. 33, no. 8, pp. 480–488, 2015, doi: 10.1016/j.tibtech.2015.06.002.
J. Olofsson, K. Nolkrantz, F. Ryttsén, B. A. Lambie, S. G. Weber, and O. Orwar, “Single-cell electroporation,” Curr. Opin. Biotechnol., vol. 14, no. 1, pp. 29–34, 2003.
J. L. Young and D. A. Dean, “Electroporation-Mediated Gene Delivery,” Adv. Genet., vol. 89, pp. 49–88, 2015, doi: 10.1016/bs.adgen.2014.10.003.
M. Sui, L. Zhang, L. Sheng, S. Huang, and L. She, “Synthesis of ZnO coated multi-walled carbon nanotubes and their antibacterial activities,” Sci. Total Environ., vol. 452, pp. 148–154, 2013.
H. Wang et al., “Branched CuO-Co3O4nanowires coated with carbon on Cu foam for water sterilization,” J. Environ. Chem. Eng., vol. 9, no. 4, p. 105629, 2021, doi: 10.1016/j.jece.2021.105629.
Z. Y. Huo et al., “Synergistic Nanowire-Enhanced Electroporation and Electrochlorination for Highly Efficient Water Disinfection,” Environ. Sci. Technol., vol. 56, no. 15, pp. 10925–10934, 2022, doi: 10.1021/acs.est.2c01793.
Y. Yin et al., “Electroporation effect of ZnO nanoarrays under low voltage for water disinfection,” Nanotechnol. Rev., vol. 12, no. 1, p. 20220555, 2023, doi: 10.1515/ntrev-2022-0555.
P. Kumar, A. Dhar, and R. Vaish, “Hand-powered and portable water disinfection system by locally enhanced electric field treatment (LEEFT) with modified nanowire electrodes,” Eur. Phys. J. Plus, vol. 137, no. 6, p. 709, 2022, doi: 10.1140/epjp/s13360-022-02886-2.
E. Bahcelioglu, D. Doganay, S. Coskun, H. E. Unalan, and T. H. Erguder, “A Point-of-Use (POU) Water Disinfection: Silver Nanowire Decorated Glass Fiber Filters,” J. Water Process Eng., vol. 38, p. 101616, 2020, doi: 10.1016/j.jwpe.2020.101616.
Z. Y. Huo et al., “Triboelectrification induced self-powered microbial disinfection using nanowire-enhanced localized electric field,” Nat. Commun., vol. 12, no. 1, p. 3693, 2021, doi: 10.1038/s41467-021-24028-5.
Z. Y. Huo et al., “Carbon-nanotube sponges enabling highly efficient and reliable cell inactivation by low-voltage electroporation,” Environ. Sci. Nano, vol. 4, no. 10, pp. 2010–2017, 2017, doi: 10.1039/c7en00558j.
B. Garg, R. C. Dogra, and P. K. Sharma, “High-efficiency transformation of Rhizobium leguminosarum by electroporation,” Appl. Environ. Microbiol., vol. 65, no. 6, pp. 2802–2804, 1999, doi: 10.1128/aem.65.6.2802-2804.1999.
A. Khan, J. Edberg, O. Nur, and M. Willander, “A novel investigation on carbon nanotube/ZnO, Ag/ZnO and Ag/carbon nanotube/ZnO nanowires junctions for harvesting piezoelectric potential on textile,” J. Appl. Phys., vol. 116, no. 3, 2014, doi: 10.1063/1.4890306.
A. G. Osorio, I. C. L. Silveira, V. L. Bueno, and C. P. Bergmann, “H2SO4/HNO3/HCl-Functionalization and its effect on dispersion of carbon nanotubes in aqueous media,” Appl. Surf. Sci., vol. 255, no. 5 PART 1, pp. 2485–2489, 2008, doi: 10.1016/j.apsusc.2008.07.144.
J. B. Baxter and E. S. Aydil, “Epitaxial growth of ZnO nanowires on a- and c-plane sapphire,” J. Cryst. Growth, vol. 274, no. 3–4, pp. 407–411, 2005, doi: 10.1016/j.jcrysgro.2004.10.014.
M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater., vol. 4, no. 6, pp. 455–459, 2005.
G. Li et al., “Synthesis and characterization of p-n homojunction-containing zinc oxide nanowires,” Nanoscale, vol. 5, no. 6, pp. 2259–2263, 2013, doi: 10.1039/c3nr31639d.
Y. Y. Ki, H. B. Jeong, W. P. Chul, and J. Hwang, “Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers,” Environ. Sci. Technol., vol. 42, no. 4, pp. 1251–1255, 2008, doi: 10.1021/es0720199.
R. Dastjerdi and M. Montazer, “A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties,” Colloids Surfaces B Biointerfaces, vol. 79, no. 1, pp. 5–18, 2010, doi: 10.1016/j.colsurfb.2010.03.029.
J. Lalley, D. D. Dionysiou, R. S. Varma, S. Shankara, D. J. Yang, and M. N. Nadagouda, “Silver-based antibacterial surfaces for drinking water disinfection - An overview,” Curr. Opin. Chem. Eng., vol. 3, pp. 25–29, 2014, doi: 10.1016/j.coche.2013.09.004.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Copyright of the published article belongs to the authors and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 (CC BY SA) International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See the Effect of Open Access).