Advancing Renewable Energy: The Prospects of Hydrothermal Liquefaction (HTL) for Biomass into Bio-oil Conversion

Authors

  • Frank Gronwald Department of Biological Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States.
  • Lijung Wang Department of Biological Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States.

DOI:

https://doi.org/10.55151/ijeedu.v6i3.138

Keywords:

Biofuel Production, Environmental Sustainability, Green Technology, Hydrothermal Processing, Renewable Fuel Sources

Abstract

Hydrothermal liquefaction (HTL) offers a promising approach to convert biomass into bio-oil, contributing to sustainable energy solutions and reducing dependence on fossil fuels. HTL mimics natural geological processes by decomposing biomass at high temperatures (200–350°C) and pressures (10–25 MPa) in a water-based environment, producing bio-oil that can be refined for various energy applications. Despite its potential, several technical challenges limit the efficiency and scalability of HTL. The high energy requirements for maintaining these conditions also pose economic challenges, making HTL less competitive against traditional energy sources. HTL is the complex composition of bio-oil, which contains a mix of organic compounds that make refining and upgrading challenging. This complexity also affects bio-oil’s stability, requiring advanced purification techniques to ensure quality and usability. Solid residue formation during HTL reduces bio-oil yields and increases processing costs. Recent advances aim to address these limitations. New catalysts, such as metal oxides, improve bio-oil yield and reduce oxygen content, enhancing fuel quality. Innovations in reactor design, including continuous flow and microwave-assisted reactors, improve heat transfer and operational stability. Integrating HTL with other biomass conversion technologies, like anaerobic digestion, also offers pathways to increase efficiency and energy recovery. Advances in analytical techniques, like gas chromatography and mass spectrometry, are also improving bio-oil characterization, informing more effective upgrading strategies. While challenges remain, ongoing research in catalyst development, reactor optimization, and process integration strengthens HTL’s potential as a sustainable energy solution, supporting its role in advancing bio-oil production for a cleaner, renewable future.

 

References

D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, and R. Gorini, “The role of renewable energy in the global energy transformation,” Energy Strateg. Rev., vol. 24, pp. 38–50, 2019, doi: 10.1016/j.esr.2019.01.006.

J. Byrne, K. Hughes, W. Rickerson, and L. Kurdgelashvili, “American policy conflict in the greenhouse: Divergent trends in federal, regional, state, and local green energy and climate change policy,” Energy Policy, vol. 35, no. 9, pp. 4555–4573, 2007, doi: 10.1016/j.enpol.2007.02.028.

T. B. Johansson et al., Global Energy Assessment Toward a Sustainable Future Council. Cambridge University Press, 2012.

A. Demirbas, “Political, economic and environmental impacts of biofuels: A review,” Appl. Energy, vol. 86, no. SUPPL. 1, pp. S108–S117, 2009, doi: 10.1016/j.apenergy.2009.04.036.

J. J. Cheng and G. R. Timilsina, “Status and barriers of advanced biofuel technologies: A review,” Renew. Energy, vol. 36, no. 12, pp. 3541–3549, 2011, doi: 10.1016/j.renene.2011.04.031.

M. Peter, “Energy production from biomass (part 1): overview of biomass,” Bioresour. Technol., vol. 83, no. July 2001, pp. 37–46, 2002.

P. Faeth, “U.S. energy security and water: The challenges we face,” Environment, vol. 54, no. 1, pp. 4–19, 2012, doi: 10.1080/00139157.2012.639595.

D. C. Elliott, “Historical developments in hydroprocessing bio-oils,” Energy and Fuels, vol. 21, no. 3, pp. 1792–1815, 2007, doi: 10.1021/ef070044u.

K. Jacobson, K. C. Maheria, and A. K. Dalai, “Bio-oil valorization: A review,” Renew. Sustain. Energy Rev., vol. 23, pp. 91–106, 2013.

Y. Makarfi Isa and E. T. Ganda, “Bio-oil as a potential source of petroleum range fuels,” Renew. Sustain. Energy Rev., vol. 81, pp. 69–75, 2018, doi: 10.1016/j.rser.2017.07.036.

X. Hu and M. Gholizadeh, “Progress of the applications of bio-oil,” Renew. Sustain. Energy Rev., vol. 134, p. 110124, 2020, doi: 10.1016/j.rser.2020.110124.

U. Jena and K. C. Das, “Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae,” Energy and Fuels, vol. 25, no. 11, pp. 5472–5482, 2011, doi: 10.1021/ef201373m.

Y. Guo, T. Yeh, W. Song, D. Xu, and S. Wang, “A review of bio-oil production from hydrothermal liquefaction of algae,” Renew. Sustain. Energy Rev., vol. 48, pp. 776–790, 2015, doi: 10.1016/j.rser.2015.04.049.

A. Demirbas, “Biofuels sources, biofuel policy, biofuel economy and global biofuel projections,” Energy Convers. Manag., vol. 49, no. 8, pp. 2106–2116, 2008, doi: 10.1016/j.enconman.2008.02.020.

P. McKendry, “Energy production from biomass (part 2): Conversion technologies,” Bioresour. Technol., vol. 83, no. 1, pp. 47–54, 2002, doi: 10.1016/S0960-8524(01)00119-5.

N. A. Ahmed and M. Cameron, “The challenges and possible solutions of horizontal axis wind turbines as a clean energy solution for the future,” Renew. Sustain. Energy Rev., vol. 38, pp. 439–460, 2014, doi: 10.1016/j.rser.2014.06.004.

O. Ellabban, H. Abu-Rub, and F. Blaabjerg, “Renewable energy resources: Current status, future prospects and their enabling technology,” Renew. Sustain. Energy Rev., vol. 39, pp. 748–764, 2014, doi: 10.1016/j.rser.2014.07.113.

R. K. Mishra, V. kumar, P. Kumar, and K. Mohanty, “Hydrothermal liquefaction of biomass for bio-crude production: A review on feedstocks, chemical compositions, operating parameters, reaction kinetics, techno-economic study, and life cycle assessment,” Fuel, vol. 316, p. 123377, 2022, doi: 10.1016/j.fuel.2022.123377.

J. Ni et al., “A review on fast hydrothermal liquefaction of biomass,” Fuel, vol. 327, pp. 1378–1392, 2022, doi: 10.1016/j.fuel.2022.125135.

D. C. Elliott, P. Biller, A. B. Ross, A. J. Schmidt, and S. B. Jones, “Hydrothermal liquefaction of biomass: Developments from batch to continuous process,” Bioresour. Technol., vol. 178, pp. 147–156, 2015, doi: 10.1016/j.biortech.2014.09.132.

K. Brindhadevi et al., “Effect of reaction temperature on the conversion of algal biomass to bio-oil and biochar through pyrolysis and hydrothermal liquefaction,” Fuel, vol. 285, p. 119106, 2021, doi: 10.1016/j.fuel.2020.119106.

S. Nagappan et al., “Catalytic hydrothermal liquefaction of biomass into bio-oils and other value-added products – A review,” Fuel, vol. 285, p. 119053, 2021, doi: 10.1016/j.fuel.2020.119053.

S. S. Toor, L. Rosendahl, and A. Rudolf, “Hydrothermal liquefaction of biomass: A review of subcritical water technologies,” Energy, vol. 36, no. 5, pp. 2328–2342, 2011, doi: 10.1016/j.energy.2011.03.013.

Y. Zhang, “Hydrothermal Liquefaction to Convert Biomass into Crude Oil,” Biofuels from Agric. Wastes Byprod., pp. 201–232, 2010, doi: 10.1002/9780813822716.ch10.

K. Anastasakis and A. B. Ross, “Hydrothermal liquefaction of four brown macro-algae commonly found on the UK coasts: An energetic analysis of the process and comparison with bio-chemical conversion methods,” Fuel, vol. 139, pp. 546–553, 2015, doi: 10.1016/j.fuel.2014.09.006.

A. Kruse, “Hydrothermal biomass gasification,” J. Supercrit. Fluids, vol. 47, no. 3, pp. 391–399, 2009, doi: 10.1016/j.supflu.2008.10.009.

A. Corma Canos, S. Iborra, and A. Velty, “Chemical routes for the transformation of biomass into chemicals,” Chem. Rev., vol. 107, no. 6, pp. 2411–2502, 2007, doi: 10.1021/cr050989d.

H. Schmieder et al., “Hydrothermal gasification of biomass and organic wastes,” J. Supercrit. Fluids, vol. 17, no. 2, pp. 145–153, 2000, doi: 10.1016/S0896-8446(99)00051-0.

J. Yu, Q. Guo, Y. Gong, L. Ding, J. Wang, and G. Yu, “A review of the effects of alkali and alkaline earth metal species on biomass gasification,” Fuel Process. Technol., vol. 214, p. 106723, 2021, doi: 10.1016/j.fuproc.2021.106723.

K. Anastasakis, P. Biller, R. B. Madsen, M. Glasius, and I. Johannsen, “Continuous Hydrothermal Liquefaction of Biomass in a Novel Pilot Plant with Heat Recovery and Hydraulic Oscillation,” Energies, vol. 11, no. 10, p. 2695, 2018, doi: 10.3390/en11102695.

S. S. Toor et al., “Hydrothermal liquefaction of Spirulina and Nannochloropsis salina under subcritical and supercritical water conditions,” Bioresour. Technol., vol. 131, pp. 413–419, 2013, doi: 10.1016/j.biortech.2012.12.144.

B. L. Peterson, “Development and optimization of a produced water, biofilm based microalgae cultivation system for biocrude conversion using hydrothermal liquefaction.” Utah State University, 2018, [Online]. Available: https://digitalcommons.usu.edu/etd/7237.

N. Akiya and P. E. Savage, “Roles of water for chemical reactions in high-temperature water,” Chem. Rev., vol. 102, no. 8, pp. 2725–2750, 2002, doi: 10.1021/cr000668w.

D. C. Elliott, D. Beckman, A. V. Bridgwater, J. P. Diebold, S. B. Gevert, and Y. Solantausta, “Developments in Direct Thermochemical Liquefaction of Biomass: 1983-1990,” Energy and Fuels, vol. 5, no. 3, pp. 399–410, 1991, doi: 10.1021/ef00027a008.

E. Chornet and R. P. Overend, “Biomass liquefaction: an overview,” Fundam. Thermochem. biomass Convers., pp. 967–1002, 1985.

H. J. Huang and X. Z. Yuan, “Recent progress in the direct liquefaction of typical biomass,” Prog. Energy Combust. Sci., vol. 49, pp. 59–80, 2015, doi: 10.1016/j.pecs.2015.01.003.

K. Anastasakis and A. B. Ross, “Hydrothermal liquefaction of the brown macro-alga Laminaria Saccharina: Effect of reaction conditions on product distribution and composition,” Bioresour. Technol., vol. 102, no. 7, pp. 4876–4883, 2011, doi: 10.1016/j.biortech.2011.01.031.

B. Peterson et al., “Optimization of Biomass Pyrolysis Vapor Upgrading Using a Laminar Entrained-Flow Reactor System,” Energy and Fuels, vol. 34, no. 5, pp. 6030–6040, 2020, doi: 10.1021/acs.energyfuels.0c00649.

D. Yue, F. You, and S. W. Snyder, “Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges,” Comput. Chem. Eng., vol. 66, pp. 36–56, 2014, doi: 10.1016/j.compchemeng.2013.11.016.

P. Biller and A. B. Ross, “Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content,” Bioresour. Technol., vol. 102, no. 1, pp. 215–225, 2011, doi: 10.1016/j.biortech.2010.06.028.

J. M. M. Adams et al., “Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion,” Bioresour. Technol., vol. 102, no. 1, pp. 226–234, 2011, doi: 10.1016/j.biortech.2010.06.152.

P. J. Valdez, M. C. Nelson, H. Y. Wang, X. N. Lin, and P. E. Savage, “Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions,” Biomass and Bioenergy, vol. 46, pp. 317–331, 2012, doi: 10.1016/j.biombioe.2012.08.009.

P. J. Valdez and P. E. Savage, “A reaction network for the hydrothermal liquefaction of Nannochloropsis sp.,” Algal Res., vol. 2, no. 4, pp. 416–425, 2013, doi: 10.1016/j.algal.2013.08.002.

C. Gai, Y. Zhang, W. T. Chen, P. Zhang, and Y. Dong, “An investigation of reaction pathways of hydrothermal liquefaction using Chlorella pyrenoidosa and Spirulina platensis,” Energy Convers. Manag., vol. 96, pp. 330–339, 2015, doi: 10.1016/j.enconman.2015.02.056.

A. Kruse, A. Funke, and M. M. Titirici, “Hydrothermal conversion of biomass to fuels and energetic materials,” Curr. Opin. Chem. Biol., vol. 17, no. 3, pp. 515–521, 2013, doi: 10.1016/j.cbpa.2013.05.004.

X. Zhang et al., “Catalytic upgrading of bio-oil over ni-based catalysts supported on mixed oxides,” Energy and Fuels, vol. 28, no. 4, pp. 2562–2570, 2014, doi: 10.1021/ef402421j.

J. Akhtar and N. A. S. Amin, “A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass,” Renew. Sustain. Energy Rev., vol. 15, no. 3, pp. 1615–1624, 2011, doi: 10.1016/j.rser.2010.11.054.

C. Tian, B. Li, Z. Liu, Y. Zhang, and H. Lu, “Hydrothermal liquefaction for algal biorefinery: A critical review,” Renew. Sustain. Energy Rev., vol. 38, pp. 933–950, 2014, doi: 10.1016/j.rser.2014.07.030.

D. Xu, G. Lin, S. Guo, S. Wang, Y. Guo, and Z. Jing, “Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review,” Renew. Sustain. Energy Rev., vol. 97, pp. 103–118, 2018, doi: 10.1016/j.rser.2018.08.042.

A. V. Bridgwater, “Renewable fuels and chemicals by thermal processing of biomass,” Chem. Eng. J., vol. 91, no. 2–3, pp. 87–102, 2003, doi: 10.1016/S1385-8947(02)00142-0.

A. R. K. Gollakota, M. Reddy, M. D. Subramanyam, and N. Kishore, “A review on the upgradation techniques of pyrolysis oil,” Renew. Sustain. Energy Rev., vol. 58, pp. 1543–1568, 2016, doi: 10.1016/j.rser.2015.12.180.

K. F. Tzanetis, J. A. Posada, and A. Ramirez, “Analysis of biomass hydrothermal liquefaction and biocrude-oil upgrading for renewable jet fuel production: The impact of reaction conditions on production costs and GHG emissions performance,” Renew. Energy, vol. 113, pp. 1388–1398, 2017, doi: 10.1016/j.renene.2017.06.104.

G. Ischia et al., “Realization of a solar hydrothermal carbonization reactor: A zero-energy technology for waste biomass valorization,” J. Environ. Manage., vol. 259, p. 110067, 2020, doi: 10.1016/j.jenvman.2020.110067.

G. Centi and S. Perathoner, “Chemistry and energy beyond fossil fuels. A perspective view on the role of syngas from waste sources,” Catal. Today, vol. 342, pp. 4–12, 2020, doi: 10.1016/j.cattod.2019.04.003.

C. Stigsson, E. Furusjö, and P. Börjesson, “A model of an integrated hydrothermal liquefaction, gasification and Fischer-Tropsch synthesis process for converting lignocellulosic forest residues into hydrocarbons,” Bioresour. Technol., vol. 353, p. 126070, 2022, doi: 10.1016/j.biortech.2021.126070.

H. Kargbo, J. S. Harris, and A. N. Phan, “‘Drop-in’ fuel production from biomass: Critical review on techno-economic feasibility and sustainability,” Renew. Sustain. Energy Rev., vol. 135, p. 110168, 2021, doi: 10.1016/j.rser.2020.110168.

T. H. Pedersen, N. H. Hansen, O. M. Pérez, D. E. V. Cabezas, and L. A. Rosendahl, “Renewable hydrocarbon fuels from hydrothermal liquefaction: A techno-economic analysis,” Biofuels, Bioprod. Biorefining, vol. 12, no. 2, pp. 213–223, 2018, doi: 10.1002/bbb.1831.

D. Beckman et al., “Techno-economic assessment of selected biomass liquefaction processes,” Valt. Tek. Tutkimuskeskus, Tutkimuksia, no. 697, 1990.

E. Peduzzi, G. Boissonnet, G. Haarlemmer, and F. Maréchal, “Thermo-economic analysis and multi-objective optimisation of lignocellulosic biomass conversion to Fischer-Tropsch fuels,” Sustain. Energy Fuels, vol. 2, no. 5, pp. 1069–1084, 2018, doi: 10.1039/c7se00468k.

I. Tews et al., “Biomass direct liquefaction options: technoeconomic and life cycle assessment,” Pacific Northwest National Lab.(PNNL), Richland, WA (United States), 2014. [Online]. Available: https://www.osti.gov/biblio/1184983.

O. Awogbemi and D. V. Von Kallon, “Valorization of agricultural wastes for biofuel applications,” Heliyon, vol. 8, no. 10, 2022, doi: 10.1016/j.heliyon.2022.e11117.

S. R. Shanmugam, S. Adhikari, H. Nam, and S. Kar Sajib, “Effect of bio-char on methane generation from glucose and aqueous phase of algae liquefaction using mixed anaerobic cultures,” Biomass and Bioenergy, vol. 108, pp. 479–486, 2018, doi: 10.1016/j.biombioe.2017.10.034.

Z. Wang et al., “Effect of biochar addition on the microbial community and methane production in the rapid degradation process of corn straw,” Energies, vol. 14, no. 8, p. 124585, 2021, doi: 10.3390/en14082223.

G. Wang, Q. Li, M. Dzakpasu, X. Gao, C. Yuwen, and X. C. Wang, “Impacts of different biochar types on hydrogen production promotion during fermentative co-digestion of food wastes and dewatered sewage sludge,” Waste Manag., vol. 80, pp. 73–80, 2018, doi: 10.1016/j.wasman.2018.08.042.

E. Y. Lim, H. Tian, Y. Chen, K. Ni, J. Zhang, and Y. W. Tong, “Methanogenic pathway and microbial succession during start-up and stabilization of thermophilic food waste anaerobic digestion with biochar,” Bioresour. Technol., vol. 314, p. 123751, 2020, doi: 10.1016/j.biortech.2020.123751.

N. T. L. Chi et al., “A review on biochar production techniques and biochar based catalyst for biofuel production from algae,” Fuel, vol. 287, p. 119411, 2021, doi: 10.1016/j.fuel.2020.119411.

Z. Wang, C. Zhang, J. Watson, B. K. Sharma, B. Si, and Y. Zhang, “Adsorption or direct interspecies electron transfer? A comprehensive investigation of the role of biochar in anaerobic digestion of hydrothermal liquefaction aqueous phase,” Chem. Eng. J., vol. 435, p. 135078, 2022, doi: 10.1016/j.cej.2022.135078.

R. Shen, Y. Jing, J. Feng, J. Luo, J. Yu, and L. Zhao, “Performance of enhanced anaerobic digestion with different pyrolysis biochars and microbial communities,” Bioresour. Technol., vol. 296, p. 122354, 2020, doi: 10.1016/j.biortech.2019.122354.

F. Lü, Y. Liu, L. Shao, and P. He, “Powdered biochar doubled microbial growth in anaerobic digestion of oil,” Appl. Energy, vol. 247, pp. 605–614, 2019, doi: 10.1016/j.apenergy.2019.04.052.

M. Usman, Z. Shi, S. Ren, H. H. Ngo, G. Luo, and S. Zhang, “Hydrochar promoted anaerobic digestion of hydrothermal liquefaction wastewater: Focusing on the organic degradation and microbial community,” Chem. Eng. J., vol. 399, p. 125766, 2020, doi: 10.1016/j.cej.2020.125766.

L. Zhang et al., “Biochar enhanced thermophilic anaerobic digestion of food waste: Focusing on biochar particle size, microbial community analysis and pilot-scale application,” Energy Convers. Manag., vol. 209, p. 112654, 2020, doi: 10.1016/j.enconman.2020.112654.

M. J. Bardi, J. M. Mutunga, H. Ndiritu, and K. Koch, “Effect of pyrolysis temperature on the physiochemical properties of biochar and its potential use in anaerobic digestion: A critical review,” Environ. Technol. Innov., vol. 32, p. 103349, 2023, doi: 10.1016/j.eti.2023.103349.

Q. Qi et al., “Enhancement of methanogenic performance by gasification biochar on anaerobic digestion,” Bioresour. Technol., vol. 330, p. 124993, 2021, doi: 10.1016/j.biortech.2021.124993.

L. Wang et al., “Facile synthesis of fluorescent graphene quantum dots from coffee grounds for bioimaging and sensing,” Chem. Eng. J., vol. 300, pp. 75–82, 2016, doi: 10.1016/j.cej.2016.04.123.

P. SundarRajan, K. P. Gopinath, J. Arun, K. GracePavithra, A. Adithya Joseph, and S. Manasa, “Insights into valuing the aqueous phase derived from hydrothermal liquefaction,” Renew. Sustain. Energy Rev., vol. 144, p. 111019, 2021, doi: 10.1016/j.rser.2021.111019.

S. R. Shanmugam, S. Adhikari, Z. Wang, and R. Shakya, “Treatment of aqueous phase of bio-oil by granular activated carbon and evaluation of biogas production,” Bioresour. Technol., vol. 223, pp. 115–120, 2017, doi: 10.1016/j.biortech.2016.10.008.

S. R. Shanmugam, S. Adhikari, and R. Shakya, “Nutrient removal and energy production from aqueous phase of bio-oil generated via hydrothermal liquefaction of algae,” Bioresour. Technol., vol. 230, pp. 43–48, 2017, doi: 10.1016/j.biortech.2017.01.031.

P. M. Mortensen, J. D. Grunwaldt, P. A. Jensen, K. G. Knudsen, and A. D. Jensen, “A review of catalytic upgrading of bio-oil to engine fuels,” Appl. Catal. A Gen., vol. 407, no. 1–2, pp. 1–19, 2011, doi: 10.1016/j.apcata.2011.08.046.

D. López Barreiro, W. Prins, F. Ronsse, and W. Brilman, “Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects,” Biomass and Bioenergy, vol. 53, pp. 113–127, 2013, doi: 10.1016/j.biombioe.2012.12.029.

R. Mawhood, E. Gazis, S. de Jong, R. Hoefnagels, and R. Slade, “Production pathways for renewable jet fuel: a review of commercialization status and future prospects,” Biofuels, Bioprod. Biorefining, vol. 10, no. 4, pp. 462–484, 2016, doi: 10.1002/bbb.1644.

T. H. Pedersen and L. A. Rosendahl, “Production of fuel range oxygenates by supercritical hydrothermal liquefaction of lignocellulosic model systems,” Biomass and Bioenergy, vol. 83, pp. 206–215, 2015, doi: 10.1016/j.biombioe.2015.09.014.

I. Nava Bravo, S. B. Velásquez-Orta, R. Cuevas-García, I. Monje-Ramírez, A. Harvey, and M. T. Orta Ledesma, “Bio-crude oil production using catalytic hydrothermal liquefaction (HTL) from native microalgae harvested by ozone-flotation,” Fuel, vol. 241, pp. 255–263, 2019, doi: 10.1016/j.fuel.2018.12.071.

Z. Bi et al., “Biocrude from pretreated sorghum bagasse through catalytic hydrothermal liquefaction,” Fuel, vol. 188, pp. 112–120, 2017, doi: 10.1016/j.fuel.2016.10.039.

F. Hussin, N. N. Hazani, M. Khalil, and M. K. Aroua, “Environmental life cycle assessment of biomass conversion using hydrothermal technology: A review,” Fuel Process. Technol., vol. 246, p. 107747, 2023, doi: 10.1016/j.fuproc.2023.107747.

G. Zoppi, E. Tito, I. Bianco, G. Pipitone, R. Pirone, and S. Bensaid, “Life cycle assessment of the biofuel production from lignocellulosic biomass in a hydrothermal liquefaction – aqueous phase reforming integrated biorefinery,” Renew. Energy, vol. 206, pp. 375–385, 2023, doi: 10.1016/j.renene.2023.02.011.

A. V. Bridgwater, “Review of fast pyrolysis of biomass and product upgrading,” Biomass and Bioenergy, vol. 38, pp. 68–94, 2012, doi: 10.1016/j.biombioe.2011.01.048.

D. Chen, Y. Li, K. Cen, M. Luo, H. Li, and B. Lu, “Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature,” Bioresour. Technol., vol. 218, pp. 780–788, 2016, doi: 10.1016/j.biortech.2016.07.049.

Z. Huang et al., “Synthesis gas production through biomass direct chemical looping conversion with natural hematite as an oxygen carrier,” Bioresour. Technol., vol. 140, pp. 138–145, 2013, doi: 10.1016/j.biortech.2013.04.055.

S. S. Ail and S. Dasappa, “Biomass to liquid transportation fuel via Fischer Tropsch synthesis - Technology review and current scenario,” Renew. Sustain. Energy Rev., vol. 58, pp. 267–286, 2016, doi: 10.1016/j.rser.2015.12.143.

H. Mahmoudi et al., “A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation,” Biofuels Eng., vol. 2, no. 1, pp. 11–31, 2017, doi: 10.1515/bfuel-2017-0002.

A. Lappas and E. Heracleous, “Production of biofuels via Fischer-Tropsch synthesis: Biomass-to-liquids. Biomass-to-liquids.,” in Handbook of Biofuels Production: Processes and Technologies: Second Edition, Elsevier, 2016, pp. 549–593.

L. Cao et al., “Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects,” Bioresour. Technol., vol. 245, pp. 1184–1193, 2017, doi: 10.1016/j.biortech.2017.08.196.

F. Ronsse, S. van Hecke, D. Dickinson, and W. Prins, “Production and characterization of slow pyrolysis biochar: Influence of feedstock type and pyrolysis conditions,” GCB Bioenergy, vol. 5, no. 2, pp. 104–115, 2013, doi: 10.1111/gcbb.12018.

X. Chen et al., “Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield,” Fuel Process. Technol., vol. 196, p. 106180, 2019, doi: 10.1016/j.fuproc.2019.106180.

T. Shan Ahamed, S. Anto, T. Mathimani, K. Brindhadevi, and A. Pugazhendhi, “Upgrading of bio-oil from thermochemical conversion of various biomass – Mechanism, challenges and opportunities,” Fuel, vol. 287, p. 119329, 2021, doi: 10.1016/j.fuel.2020.119329.

P. Duan and P. E. Savage, “Hydrothermal liquefaction of a microalga with heterogeneous catalysts,” Ind. Eng. Chem. Res., vol. 50, no. 1, pp. 52–61, 2011, doi: 10.1021/ie100758s.

Z. Shuping, W. Yulong, Y. Mingde, I. Kaleem, L. Chun, and J. Tong, “Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake,” Energy, vol. 35, no. 12, pp. 5406–5411, 2010, doi: 10.1016/j.energy.2010.07.013.

U. Jena, K. C. Das, and J. R. Kastner, “Comparison of the effects of Na2CO3, Ca3(PO4)2, and NiO catalysts on the thermochemical liquefaction of microalga Spirulina platensis,” Appl. Energy, vol. 98, pp. 368–375, 2012, doi: 10.1016/j.apenergy.2012.03.056.

J. Zhang, Y. Zhang, and Z. Luo, “Hydrothermal liquefaction of chlorella pyrenoidosa in ethanol-water for bio-crude production,” Energy Procedia, vol. 61, pp. 1961–1964, 2014, doi: 10.1016/j.egypro.2014.12.052.

Y. F. Yang, C. P. Feng, Y. Inamori, and T. Maekawa, “Analysis of energy conversion characteristics in liquefaction of algae,” Resour. Conserv. Recycl., vol. 43, no. 1, pp. 21–33, 2004, doi: 10.1016/j.resconrec.2004.03.003.

C. Song, H. Hu, S. Zhu, G. Wang, and G. Chen, “Nonisothermal catalytic liquefaction of corn stalk in subcritical and supercritical water,” Energy and Fuels, vol. 18, no. 1, pp. 90–96, 2004, doi: 10.1021/ef0300141.

S. Karagöz, T. Bhaskar, A. Muto, and Y. Sakata, “Hydrothermal upgrading of biomass: Effect of K2CO3 concentration and biomass/water ratio on products distribution,” Bioresour. Technol., vol. 97, no. 1, pp. 90–98, 2006, doi: 10.1016/j.biortech.2005.02.051.

O. Norouzi, S. Mazhkoo, S. A. Haddadi, M. Arjmand, and A. Dutta, “Hydrothermal liquefaction of green macroalgae Cladophora glomerata: Effect of functional groups on the catalytic performance of graphene oxide/polyurethane composite,” Catal. Today, vol. 404, pp. 93–104, 2022, doi: 10.1016/j.cattod.2022.01.021.

S. Mukundan, J. L. Wagner, P. K. Annamalai, D. S. Ravindran, G. K. Krishnapillai, and J. Beltramini, “Hydrothermal co-liquefaction of biomass and plastic wastes into biofuel: Study on catalyst property, product distribution and synergistic effects,” Fuel Process. Technol., vol. 238, p. 107523, 2022, doi: 10.1016/j.fuproc.2022.107523.

M. Kumar, A. O. Oyedun, and A. Kumar, “Biohydrogen production from bio-oil via hydrothermal liquefaction,” in Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, Elsevier, 2019, pp. 715–732.

C. M. Lok, J. Van Doorn, and G. Aranda Almansa, “Promoted ZSM-5 catalysts for the production of bio-aromatics, a review,” Renew. Sustain. Energy Rev., vol. 113, p. 109248, 2019, doi: 10.1016/j.rser.2019.109248.

A. A. Lappas, K. G. Kalogiannis, E. F. Iliopoulou, K. S. Triantafyllidis, and S. D. Stefanidis, “Catalytic Pyrolysis of Biomass for Transportation Fuels,” Adv. Bioenergy Sustain. Chall., pp. 45–56, 2015, doi: 10.1002/9781118957844.ch4.

E. F. Iliopoulou et al., “Pilot-scale validation of Co-ZSM-5 catalyst performance in the catalytic upgrading of biomass pyrolysis vapours,” Green Chem., vol. 16, no. 2, pp. 662–674, 2014, doi: 10.1039/c3gc41575a.

A. Veses et al., “Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts,” Bioresour. Technol., vol. 162, pp. 250–258, 2014, doi: 10.1016/j.biortech.2014.03.146.

H. Wang, A. Gross, and J. Liu, “Influence of methanol addition on bio-oil thermal stability and corrosivity,” Chem. Eng. J., vol. 433, p. 133692, 2022, doi: 10.1016/j.cej.2021.133692.

J. Zhang and X. Zhang, “The thermochemical conversion of biomass into biofuels,” in Biomass, Biopolymer-Based Materials, and Bioenergy: Construction, Biomedical, and other Industrial Applications, Elsevier, 2019, pp. 327–368.

S. Nawaz et al., “Phyllosilicate derived catalysts for efficient conversion of lignocellulosic derived biomass to biodiesel: A review,” Bioresour. Technol., vol. 343, p. 126068, 2022, doi: 10.1016/j.biortech.2021.126068.

K. K. Moses, A. Aliyu, A. Hamza, and I. A. Mohammed-Dabo, “Recycling of waste lubricating oil: A review of the recycling technologies with a focus on catalytic cracking, techno-economic and life cycle assessments,” J. Environ. Chem. Eng., vol. 11, no. 6, p. 111273, 2023, doi: 10.1016/j.jece.2023.111273.

M. Saeed, H. M. Marwani, U. Shahzad, A. M. Asiri, I. Hussain, and M. M. Rahman, “Utilizing Nanostructured Materials for Hydrogen Generation, Storage, and Diverse Applications,” Chem. - An Asian J., vol. 19, no. 16, p. e202300593, 2024, doi: 10.1002/asia.202300593.

J. A. Ramirez, R. J. Brown, and T. J. Rainey, “A review of hydrothermal liquefaction bio-crude properties and prospects for upgrading to transportation fuels,” Energies, vol. 8, no. 7, pp. 6765–6794, 2015, doi: 10.3390/en8076765.

T. M. Brown, P. Duan, and P. E. Savage, “Hydrothermal liquefaction and gasification of Nannochloropsis sp.,” Energy and Fuels, vol. 24, no. 6, pp. 3639–3646, 2010, doi: 10.1021/ef100203u.

C. Jazrawi, P. Biller, A. B. Ross, A. Montoya, T. Maschmeyer, and B. S. Haynes, “Pilot plant testing of continuous hydrothermal liquefaction of microalgae,” Algal Res., vol. 2, no. 3, pp. 268–277, 2013, doi: 10.1016/j.algal.2013.04.006.

A. Weir et al., “Renewable binders from waste biomass for road construction: A review on thermochemical conversion technologies and current developments,” Constr. Build. Mater., vol. 330, p. 127076, 2022, doi: 10.1016/j.conbuildmat.2022.127076.

A. A. Arpia, W. H. Chen, S. S. Lam, P. Rousset, and M. D. G. de Luna, “Sustainable biofuel and bioenergy production from biomass waste residues using microwave-assisted heating: A comprehensive review,” Chem. Eng. J., vol. 403, p. 126233, 2021, doi: 10.1016/j.cej.2020.126233.

D. Xu and P. E. Savage, “Effect of temperature, water loading, and Ru/C catalyst on water-insoluble and water-soluble biocrude fractions from hydrothermal liquefaction of algae,” Bioresour. Technol., vol. 239, pp. 1–6, 2017, doi: 10.1016/j.biortech.2017.04.127.

Downloads

Published

2024-12-30

How to Cite

[1]
F. Gronwald and L. Wang, “Advancing Renewable Energy: The Prospects of Hydrothermal Liquefaction (HTL) for Biomass into Bio-oil Conversion”, Int. J. Environ. Eng. Educ., vol. 6, no. 3, pp. 132–144, Dec. 2024.

Issue

Section

Review Article