Impact of Atmospheric Parameters on Human Respiratory Tract Infections (RTIs)
Abstract
Respiratory tract infections (RTIs) are a significant public health issue globally, with varying degrees of severity and implications. Environmental factors, particularly atmospheric parameters, can exacerbate these health conditions. Understanding the relationship between atmospheric conditions and RTIs is crucial for effective public health interventions. This systematic literature review analyzes research on the impact of atmospheric parameters on RTIs through a systematic search across multiple electronic databases using different keyword combinations. The retrieved articles were categorized based on atmospheric parameters investigated, such as temperature, humidity, air pollution, and rainfall. The review findings indicate that various atmospheric factors, including wind speed, air pollution (PM10, PM2.5, CO, and O3), air temperature, atmospheric pressure, and humidity, influence the occurrence and severity of respiratory infections. Low wind speed and high air pollution were identified as risk factors for severe acute respiratory infection (SARI). In children, meteorological factors like air temperature, atmospheric pressure, rainfall, sunlight hours, wind speed, and relative humidity were associated with lower respiratory tract infections. Pollutants like PM2.5, carbon monoxide, sulfur dioxide, and tropospheric ozone directly impact pediatric respiratory infections. Climate variables affect the seasonal activity of pathogens like respiratory syncytial virus (RSV). These findings underscore the importance of considering atmospheric parameters in understanding and preventing RTIs. Addressing these challenges requires a comprehensive approach integrating environmental and public health interventions. This approach can better mitigate the effects of atmosphere-related risks on respiratory health.
References
M. Z. Jacobson, Fundamentals of atmospheric modeling second edition, vol. 9780521839. Cambridge university press, 2005.
N. L. Seaman, “Meteorological modeling for air-quality assessments,” Atmos. Environ., vol. 34, no. 12–14, pp. 2231–2259, 2000, doi: 10.1016/S1352-2310(99)00466-5.
T. Stathopoulos, “Pedestrian level winds and outdoor human comfort,” J. Wind Eng. Ind. Aerodyn., vol. 94, no. 11, pp. 769–780, 2006, doi: 10.1016/j.jweia.2006.06.011.
S. Wang, B. Fu, W. Zhao, Y. Liu, and F. Wei, “Structure, function, and dynamic mechanisms of coupled human–natural systems,” Curr. Opin. Environ. Sustain., vol. 33, pp. 87–91, 2018, doi: 10.1016/j.cosust.2018.05.002.
J. Kang, C. Li, B. Zhang, J. Zhang, M. Li, and Y. Hu, “How do natural and human factors influence ecosystem services changing? A case study in two most developed regions of China,” Ecol. Indic., vol. 146, p. 109891, 2023, doi: 10.1016/j.ecolind.2023.109891.
J. F. Manwell, J. G. McGowan, and A. L. Rogers, Wind Energy Explained: Theory, Design and Application. John Wiley & Sons, 2010.
C. Pérez Albornoz, M. A. Escalante Soberanis, V. Ramírez Rivera, and M. Rivero, “Review of atmospheric stability estimations for wind power applications,” Renew. Sustain. Energy Rev., vol. 163, p. 112505, 2022, doi: 10.1016/j.rser.2022.112505.
A. Mahesh and K. S. Sandhu, “Hybrid wind/photovoltaic energy system developments: Critical review and findings,” Renew. Sustain. Energy Rev., vol. 52, pp. 1135–1147, 2015, doi: 10.1016/j.rser.2015.08.008.
K. Anoune, M. Bouya, A. Astito, and A. Ben Abdellah, “Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review,” Renew. Sustain. Energy Rev., vol. 93, pp. 652–673, 2018, doi: 10.1016/j.rser.2018.05.032.
M. Panteli and P. Mancarella, “Influence of extreme weather and climate change on the resilience of power systems: Impacts and possible mitigation strategies,” Electr. Power Syst. Res., vol. 127, pp. 259–270, 2015, doi: 10.1016/j.epsr.2015.06.012.
C. Varianou Mikellidou, L. M. Shakou, G. Boustras, and C. Dimopoulos, “Energy critical infrastructures at risk from climate change: A state of the art review,” Saf. Sci., vol. 110, pp. 110–120, 2018, doi: 10.1016/j.ssci.2017.12.022.
N. Hamilton, “Atmospheric condition identification in multivariate data through a metric for total variation,” Atmos. Meas. Tech., vol. 13, no. 2, pp. 1019–1032, 2020, doi: 10.5194/amt-13-1019-2020.
F. P. De Mello, W. Lyra, and R. Keller, “The Alpha Centauri binary system: Atmospheric parameters and element abundances,” Astron. Astrophys., vol. 488, no. 2, pp. 653–666, 2008, doi: 10.1051/0004-6361:200810031.
N. Boussoussou, M. Boussoussou, G. Merész, M. Rakovics, L. Entz, and A. Nemes, “Complex effects of atmospheric parameters on acute cardiovascular diseases and major cardiovascular risk factors: data from the Cardiometeorology SM study,” Sci. Rep., vol. 9, no. 1, p. 6358, 2019, doi: 10.1038/s41598-019-42830-6.
A. Dondi et al., “Outdoor Air Pollution and Childhood Respiratory Disease: The Role of Oxidative Stress,” International Journal of Molecular Sciences, vol. 24, no. 5. 2023, doi: 10.3390/ijms24054345.
V. Hegedus et al., “Comparative analysis of atmospheric parameters from high-resolution spectroscopic sky surveys: APOGEE, GALAH, Gaia-ESO,” Astron. Astrophys., vol. 670, p. A107, 2023, doi: 10.1051/0004-6361/202244813.
K. Chance and R. L. Kurucz, “An improved high-resolution solar reference spectrum for earth’s atmosphere measurements in the ultraviolet, visible, and near infrared,” J. Quant. Spectrosc. Radiat. Transf., vol. 111, no. 9, pp. 1289–1295, 2010, doi: 10.1016/j.jqsrt.2010.01.036.
D. Ravichandran et al., “High burden of respiratory viral infection-associated mortality among critically ill children,” Ann. Acad. Med. Singapore, vol. 51, no. 9, pp. 575–577, 2022, doi: 10.47102/annals-acadmedsg.2022168.
M. S. Niederman and A. Torres, “Respiratory infections,” Eur. Respir. Rev., vol. 31, no. 166, 2022.
R. Chapman, A. D’angelo, and S. Bagby, “Nanopore-based metagenomic sequencing: a diagnostic tool in respiratory tract infection,” ERJ Open Res., vol. 8, no. 4, 2022, doi: 10.1183/23120541.00461-2022.
J. T. Lim, K. B. Tan, J. Abisheganaden, and B. L. Dickens, “Forecasting upper respiratory tract infection burden using high-dimensional time series data and forecast combinations,” PLoS Comput. Biol., vol. 19, no. 2, p. e1010892, 2023, doi: 10.1371/journal.pcbi.1010892.
S. Safiri et al., “Global burden of lower respiratory infections during the last three decades,” Front. Public Heal., vol. 10, p. 1028525, 2023, doi: 10.3389/fpubh.2022.1028525.
Y. Liu, J. You, J. Dong, J. Wang, and H. Zhang, “Differential effects of size-specific particulate matter on lower respiratory infections in children: A time-series analysis in Lanzhou, China,” Hum. Ecol. Risk Assess., vol. 30, no. 1–2, pp. 40–57, 2024, doi: 10.1080/10807039.2023.2260095.
K. J. Wu, X. Q. Wu, and L. Hong, “Atmospheric environment and severe acute respiratory infections in Nanjing, China, 2018–2019,” Int. J. Environ. Health Res., vol. 33, no. 5, pp. 441–451, 2023, doi: 10.1080/09603123.2022.2034757.
N. Mao et al., “Effects of temperature, humidity, and air saturation stat on the transmission risk prediction of COVID-19 in typical scenariose,” p., 2022.
J.-H. Jung et al., “Correlation of respiratory syncytial virus infection with climate parameters and air pollution levels in Korean children during 2005–2012,” Allergy, Asthma Respir. Dis., vol. 6, no. 4, p. 206, 2018, doi: 10.4168/aard.2018.6.4.206.
A. J. Burbank, “Risk Factors for Respiratory Viral Infections: A Spotlight on Climate Change and Air Pollution,” J. Asthma Allergy, vol. 16, pp. 183–194, 2023, doi: 10.2147/JAA.S364845.
C. Zhao, X. Fang, Y. Feng, X. Fang, J. He, and H. Pan, “Emerging role of air pollution and meteorological parameters in COVID-19,” J. Evid. Based. Med., vol. 14, no. 2, pp. 123–138, 2021, doi: 10.1111/jebm.12430.
A. Notari, “Temperature dependence of COVID-19 transmission,” Sci. Total Environ., vol. 763, p. 144390, 2021.
B. Samaila, B. Maidamma, B. Usman, A. I. Jega, and S. A. Alhaji, “Assessment of hazard index and incremental life cancer risk associated with heavy metals in the soils,” Sci. Prog. Res., vol. 2, no. 1, pp. 496–516, 2022, doi: 10.52152/spr/2022.155.
B. Samaila, “‘Radiological Implications of Radon Levels on Human Health: Systematic Review in Nigeria,’” Biomed. J. Sci. Tech. Res., vol. 52, no. 4, pp. 43967–43986, 2023, doi: 10.26717/bjstr.2023.52.008291.
J. J. Higgins, An introduction to non-parametric statistics, vol. 5, no. 20. Brooks/Cole Pacific Grove, CA, 2013.
J. L. Brozek et al., “GRADE Guidelines 30: the GRADE approach to assessing the certainty of modeled evidence—An overview in the context of health decision-making,” J. Clin. Epidemiol., vol. 129, pp. 138–150, 2021, doi: 10.1016/j.jclinepi.2020.09.018.
T. Holloway, P. L. Kinney, and A. Sauthoff, “Application of air quality models to public health analysis,” Energy Sustain. Dev., vol. 9, no. 3, pp. 49–57, 2005, doi: 10.1016/S0973-0826(08)60523-2.
B. Samaila et al., “Dosimetric Study on Natural Background Ionizing Radiation and Impact Assessment on Public Health: A systematic Review in Nigeria,” Int. J. Adv. Heal. Sci. Technol., vol. 2, no. 5, pp. 335–346, 2022, doi: 10.35882/ijahst.v2i5.148.
M. Borenstein, “Effect sizes for continuous data,” Hand. Res. Synth. Meta-Analysis, 2nd Ed., vol. 2, 2009.
G. H. Guyatt et al., “GRADE guidelines: 9. Rating up the quality of evidence,” Chinese J. Evidence-Based Med., vol. 11, no. 12, pp. 1459–1463, 2011.
G. H. Guyatt et al., “GRADE: An emerging consensus on rating quality of evidence and strength of recommendations,” Chinese J. Evidence-Based Med., vol. 9, no. 1, pp. 8–11, 2009.
D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, “Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement,” J. Clin. Epidemiol., vol. 62, no. 10, pp. 1006–1012, 2009, doi: 10.1016/j.jclinepi.2009.06.005.
World Health Organization (WHO), “Review of Evidence on Health Aspects of Air Pollution ,” World Health Organization. Regional Office for Europe, 2021. [Online]. Available: https://www.who.int/europe/publications/i/item/WHO-EURO-2013-4101-43860-61757.
M. L. Bell, A. McDermott, S. L. Zeger, J. M. Samet, and F. Dominici, “Ozone and short-term mortality in 95 US urban communities, 1987-2000,” Jama, vol. 292, no. 19, pp. 2372–2378, 2004, doi: 10.1001/jama.292.19.2372.
J. A. Raub, M. Mathieu-Nolf, N. B. Hampson, and S. R. Thom, “Carbon monoxide poisoning - A public health perspective,” Toxicology, vol. 145, no. 1, pp. 1–14, 2000, doi: 10.1016/S0300-483X(99)00217-6.
A. L. F. Braga, A. Zanobetti, and J. Schwartz, “The effect of weather on respiratory and cardiovascular deaths in 12 U.S. cities,” Environ. Health Perspect., vol. 110, no. 9, pp. 859–863, 2002, doi: 10.1289/ehp.02110859.
M. E. Falagas, G. Peppas, D. K. Matthaiou, D. E. Karageorgopoulos, N. Karalis, and G. Theocharis, “Effect of meteorological variables on the incidence of lower urinary tract infections,” Eur. J. Clin. Microbiol. Infect. Dis., vol. 28, no. 6, pp. 709–712, 2009, doi: 10.1007/s10096-008-0679-z.
G. D’Amato, L. Cecchi, M. D’Amato, and G. Liccardi, “Urban air pollution and climate change as environmental risk factors of respiratory allergy: An update,” J. Investig. Allergol. Clin. Immunol., vol. 20, no. 2, pp. 95–102, 2010.
T. Chen et al., “Acute respiratory response to individual particle exposure (PM1.0, PM2.5 and PM10) in the elderly with and without chronic respiratory diseases,” Environ. Pollut., vol. 271, p. 116329, 2021, doi: 10.1016/j.envpol.2020.116329.
Y. Zhang et al., “Respiratory mortality associated with ozone in China: A systematic review and meta-analysis,” Environ. Pollut., vol. 280, p. 116957, 2021, doi: 10.1016/j.envpol.2021.116957.
A. J. Cohen et al., “Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015,” Lancet, vol. 389, no. 10082, pp. 1907–1918, 2017, doi: 10.1016/S0140-6736(17)30505-6.
H. Huang et al., “Influencing mechanisms of urban heat island on respiratory diseases,” Iran. J. Public Health, vol. 48, no. 9, pp. 1636–1646, 2019, doi: 10.18502/ijph.v48i9.3023.
H. Jia et al., “Ambient air pollution, temperature and hospital admissions due to respiratory diseases in a cold, industrial city,” J. Glob. Health, vol. 12, 2022, doi: 10.7189/jogh.12.04085.
F. Feng et al., “Effects of extreme temperature on respiratory diseases in Lanzhou, a temperate climate city of China,” Environ. Sci. Pollut. Res., vol. 28, no. 35, pp. 49278–49288, 2021, doi: 10.1007/s11356-021-14169-x.
X. Y. Zhao, Y. Zhang, G. C. Fan, Y. P. Li, C. Y. Yin, and J. Y. Chen, “Effect of meteorological factors on respiratory system diseases in Funan, China,” Appl. Ecol. Environ. Res., vol. 17, no. 4, pp. 9515–9528, 2019, doi: 10.15666/aeer/1704_95159528.
Y. Zhao et al., “Morbidity burden of respiratory diseases attributable to ambient temperature: A case study in a subtropical city in China,” Environ. Heal. A Glob. Access Sci. Source, vol. 18, no. 1, pp. 1–8, 2019, doi: 10.1186/s12940-019-0529-8.
M. Mirsaeidi, H. Motahari, M. T. Khamesi, A. Sharifi, M. Campos, and D. E. Schraufnagel, “Climate change and respiratory infections,” Ann. Am. Thorac. Soc., vol. 13, no. 8, pp. 1223–1230, 2016, doi: 10.1513/AnnalsATS.201511-729PS.
Z. Yang et al., “Assessing the Impact of Meteorological Conditions on Outpatient Visits for Childhood Respiratory Diseases in Urumqi, China,” J. Occup. Environ. Med., vol. 64, no. 10, pp. E598–E605, 2022, doi: 10.1097/JOM.0000000000002640.
G. Zhai, K. Zhang, and G. Chai, “Impact of temperature on upper respiratory tract infections in Lanzhou based on the distributed lag model,” MCB Mol. Cell. Biomech., vol. 18, no. 1, pp. 21–31, 2021, doi: 10.32604/MCB.2021.014287.
G. Chai, H. He, Y. Su, Y. Sha, and S. Zong, “Lag effect of air temperature on the incidence of respiratory diseases in Lanzhou, China,” Int. J. Biometeorol., vol. 64, no. 1, pp. 83–93, 2020, doi: 10.1007/s00484-019-01795-x.
S. Chen, C. Liu, G. Lin, O. Hänninen, H. Dong, and K. Xiong, “The role of absolute humidity in respiratory mortality in Guangzhou, a hot and wet city of South China,” Environ. Health Prev. Med., vol. 26, no. 1, p. 109, 2021, doi: 10.1186/s12199-021-01030-3.
H. He, G. Chai, Y. Su, Y. Sha, S. Zong, and H. Bao, “Interactive effects between temperature and humidity on outpatient visits of respiratory diseases in Lanzhou, China,” Weather. Clim. Soc., vol. 13, no. 3, pp. 459–472, 2021, doi: 10.1175/WCAS-D-20-0040.1.
K. V. R. Arcenal, M. S. Carmen, and R. G. Garcia, “Effects of Low Humidity and High Humidity on the Nasal Area of the People,” in 2023 IEEE IAS Global Conference on Emerging Technologies, GlobConET 2023, 2023, pp. 1–6, doi: 10.1109/GlobConET56651.2023.10149971.
J. M. Courtney and A. Bax, “Hydrating the respiratory tract: An alternative explanation why masks lower severity of COVID-19,” Biophys. J., vol. 120, no. 6, pp. 994–1000, 2021, doi: 10.1016/j.bpj.2021.02.002.
Q. Wu et al., “The contrasting relationships of relative humidity with influenza A and B in a humid subtropical region,” Environ. Sci. Pollut. Res., vol. 28, no. 27, pp. 36828–36836, 2021, doi: 10.1007/s11356-021-13107-1.
Q. Su et al., “The Interaction Effects of Temperature and Humidity on Emergency Room Visits for Respiratory Diseases in Beijing, China (Cell Biochemistry and Biophysics, (2014), 70, 2, (1377-1384), 10.1007/s12013-014-0067-5),” Cell Biochem. Biophys., vol. 76, no. 1–2, p. 327, 2018, doi: 10.1007/s12013-017-0803-8.
G. D’Amato and C. A. Akdis, “Desert dust and respiratory diseases: Further insights into the epithelial barrier hypothesis,” Allergy: European Journal of Allergy and Clinical Immunology, vol. 77, no. 12. Wiley Online Library, pp. 3490–3492, 2022, doi: 10.1111/all.15392.
E. Vergadi, G. Rouva, M. Angeli, and E. Galanakis, “Infectious Diseases Associated with Desert Dust Outbreaks: A Systematic Review,” Int. J. Environ. Res. Public Health, vol. 19, no. 11, p. 6907, 2022, doi: 10.3390/ijerph19116907.
V. Nkosi et al., “Exploring Meteorological Conditions and Human Health Impacts during Two Dust Storm Events in Northern Cape Province, South Africa: Findings and Lessons Learnt,” Atmosphere (Basel)., vol. 13, no. 3, p. 424, 2022, doi: 10.3390/atmos13030424.
A. Sadeghi Moghaddam, H. Khankeh, M. Norozi, S. Fateh, and M. Farrokhi, “A Critique of Studies on the Combined Effect of Dust Storms and Meteorological Elements on Cardiovascular, Cerebrovascular, and Respiratory Diseases,” Heal. Emergencies Disasters Q., vol. 8, no. 1, pp. 1–6, 2022, doi: 10.32598/hdq.8.1.383.1.
M. Hashizume, K. Ueda, Y. Nishiwaki, T. Michikawa, and D. Onozuka, “Health effects of Asian dust events: a review of the literature.,” Nippon eiseigaku zasshi. Japanese J. Hyg., vol. 65, no. 3, pp. 413–421, 2010, doi: 10.1265/jjh.65.413.
K. S. Lwin et al., “Effects of Desert Dust and Sandstorms on Human Health: A Scoping Review,” GeoHealth, vol. 7, no. 3, p. e2022GH000728, 2023, doi: 10.1029/2022GH000728.
M. Boğan et al., “Effect of desert dust storms and meteorological factors on respiratory diseases,” Allergy Eur. J. Allergy Clin. Immunol., vol. 77, no. 7, pp. 2243–2246, 2022, doi: 10.1111/all.15298.
C. Rowan et al., “Dust Storms and Respiratory Emergency Department Visits in the Southwestern United States,” in ISEE Conference Abstracts, 2022, vol. 2022, no. 1, doi: 10.1289/isee.2022.o-op-173.
G. Guarnieri, B. Olivieri, G. Senna, and A. Vianello, “Relative Humidity and Its Impact on the Immune System and Infections,” Int. J. Mol. Sci., vol. 24, no. 11, p. 9456, 2023, doi: 10.3390/ijms24119456.
A. Božič and M. Kanduč, “Relative humidity in droplet and airborne transmission of disease,” J. Biol. Phys., vol. 47, no. 1, pp. 1–29, 2021, doi: 10.1007/s10867-020-09562-5.
E. L. Murray et al., “Rainfall, household crowding, and acute respiratory infections in the tropics,” Epidemiol. Infect., vol. 140, no. 1, pp. 78–86, 2012, doi: 10.1017/S0950268811000252.
C. M. Chan, A. A. Wahab, and A. Ali, “Determining the Relationship of Meteorological Factors and Severe Pediatric Respiratory Syncytial Virus (RSV) Infection in Central Peninsular Malaysia,” Int. J. Environ. Res. Public Health, vol. 20, no. 3, p. 1848, 2023, doi: 10.3390/ijerph20031848.
D. K. Saini and M. Kumar, “Seasonal Changes in Respiratory Health Status of Road-Side Vendors in Industrial City Gajraula,” Pollut. Res., vol. 41, no. 3, pp. 1106–1111, 2022, doi: 10.53550/pr.2022.v41i03.048.
J. M. de V. Xavier et al., “Climate seasonality and lower respiratory tract diseases: a predictive model for pediatric hospitalizations,” Rev. Bras. Enferm., vol. 75, no. 2, p. e20210680, 2022, doi: 10.1590/0034-7167-2021-0680.
C. Maftei, R. Muntean, and I. Poinareanu, “The Impact of Air Pollution on Pulmonary Diseases: A Case Study from Brasov County, Romania,” Atmosphere (Basel)., vol. 13, no. 6, p. 902, 2022, doi: 10.3390/atmos13060902.
A. Saleem et al., “Effects of Air Pollution on Respiratory System (Lungs) and Modern Techniques to Control Pollution,” Haya Saudi J. Life Sci., vol. 7, no. 6, pp. 191–198, 2022, doi: 10.36348/sjls.2022.v07i06.003.
Y. G. Lee, P. H. Lee, S. M. Choi, M. H. An, and A. S. Jang, “Effects of air pollutants on airway diseases,” Int. J. Environ. Res. Public Health, vol. 18, no. 18, p. 9905, 2021, doi: 10.3390/ijerph18189905.
M. P. Sierra-Vargas, J. M. Montero-Vargas, Y. Debray-García, J. C. Vizuet-de-Rueda, A. Loaeza-Román, and L. M. Terán, “Oxidative Stress and Air Pollution: Its Impact on Chronic Respiratory Diseases,” Int. J. Mol. Sci., vol. 24, no. 1, p. 853, 2023, doi: 10.3390/ijms24010853.
A. Gandhimathi, R. Manju, K. Ramadevi, S. Rajalakshmi, and I. Mayilvahanan, “A study of environmental impact of air pollution on human health: PM deposition modelling,” Glob. Nest J., vol. 25, no. 6, pp. 35–40, 2023, doi: 10.30955/gnj.004613.
M. Stafoggia et al., “Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model,” Environ. Int., vol. 124, pp. 170–179, 2019, doi: 10.1016/j.envint.2019.01.016.
R. W. Atkinson, S. Kang, H. R. Anderson, I. C. Mills, and H. A. Walton, “Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: A systematic review and meta-analysis,” Thorax, vol. 69, no. 7, pp. 660–665, 2014, doi: 10.1136/thoraxjnl-2013-204492.
R. D. Brook et al., “Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the american heart association,” Circulation, vol. 121, no. 21, pp. 2331–2378, 2010, doi: 10.1161/CIR.0b013e3181dbece1.
H. Chen, M. S. Goldberg, and P. J. Viileneuve, “A systematic review of the relation between long-term exposure to ambient air pollution and chronic diseases,” Rev. Environ. Health, vol. 23, no. 4, pp. 243–297, 2008, doi: 10.1515/reveh.2008.23.4.243.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Copyright of the published article belongs to the authors and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 (CC BY SA) International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See the Effect of Open Access).