Environmental Assessment of Fishpond Water: Physicochemical and Microbial Analysis of Water Quality in Aquaculture

Authors

  • Pamila Erica L. Vicencio Department of Environmental Science, College of Science, Bulacan State University, Malolos 3000, Bulacan, Philippines
  • Missy Meine C. Dela Cruz Department of Environmental Science, College of Science, Bulacan State University, Malolos 3000, Bulacan, Philippines
  • Angelica P. Reyes Department of Environmental Science, College of Science, Bulacan State University, Malolos 3000, Bulacan, Philippines

DOI:

https://doi.org/10.55151/ijeedu.v7i1.164

Keywords:

Air Pollution, Aquaculture Systems, Dissolved Oxygen, Environmental Risks, Sustainable Management

Abstract

This study assesses the water quality of selected fishponds in Barangay Binakod, Bulacan, Philippines, focusing on critical physicochemical and microbiological parameters necessary for sustainable aquaculture. Key parameters, including pH, temperature, turbidity, dissolved oxygen, phosphate, nitrate, fecal coliform, and total coliform, were measured through on-site field monitoring using calibrated water quality meters and laboratory analysis of water samples. To complement the quantitative data, interviews with fishpond owners were conducted to gather qualitative insights into feeding practices, fertilizer application, and other management practices that influence nutrient loads and water quality. The collected data were compared with the standard aquaculture water quality guidelines outlined in the Department of Environment and Natural Resources (DENR) Administrative Order No. 2016-008 for Class C water bodies. This comparison highlights deviations from the recommended standards and identifies factors contributing to potential water quality issues. The study also examines how these parameters impact the growth, survival, and overall health of aquatic organisms in the fishponds, providing a comprehensive understanding of the current water quality status. The findings of the study offer evidence-based recommendations to fishpond owners, focusing on improving water quality and enhancing aquaculture production. These recommendations address nutrient imbalances, optimize management practices, and reduce environmental impacts. The results of this research contribute to the sustainable management of aquaculture in Barangay Binakod and serve as a valuable reference for improving water quality and productivity in similar aquaculture systems. The importance of maintaining optimal water quality to ensure the long-term viability and profitability of aquaculture operations while promoting environmental sustainability.

References

[1] J. Alcamo, “Water quality and its interlinkages with the Sustainable Development Goals,” Curr. Opin. Environ. Sustain., vol. 36, pp. 126–140, 2019, doi: 10.1016/j.cosust.2018.11.005.

[2] A. P. Tom, J. S. Jayakumar, M. Biju, J. Somarajan, and M. A. Ibrahim, “Aquaculture wastewater treatment technologies and their sustainability: A review,” Energy Nexus, vol. 4, p. 100022, 2021, doi: 10.1016/j.nexus.2021.100022.

[3] S. Y. Zhang et al., “An integrated recirculating aquaculture system (RAS) for land-based fish farming: The effects on water quality and fish production,” Aquac. Eng., vol. 45, no. 3, pp. 93–102, 2011, doi: 10.1016/j.aquaeng.2011.08.001.

[4] J. L. Blanchard et al., “Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture,” Nat. Ecol. Evol., vol. 1, no. 9, pp. 1240–1249, 2017, doi: 10.1038/s41559-017-0258-8.

[5] A. Tahiluddin and E. Terzi, “An overview of fisheries and aquaculture in the Philippines,” J. Anatol. Environ. Anim. Sci., vol. 6, no. 4, pp. 475–486, 2021.

[6] C. E. Boyd and C. S. Tucker, “Handbook for aquaculture water quality,” Handb. Aquac. water Qual., vol. 439, 2014.

[7] Department of Environment and Natural Resources (DENR), “Water Quality Guidelines and General Effluent Standards of 2016,” Quezon, 2016.

[8] S. Some, R. Mondal, D. Mitra, D. Jain, D. Verma, and S. Das, “Microbial pollution of water with special reference to coliform bacteria and their nexus with environment,” Energy Nexus, vol. 1, p. 100008, 2021, doi: 10.1016/j.nexus.2021.100008.

[9] M. C. J. Verdegem, “Nutrient discharge from aquaculture operations in function of system design and production environment,” Rev. Aquac., vol. 5, no. 3, pp. 158–171, 2013, doi: 10.1111/raq.12011.

[10] L. Yang, L. Sen Chou, and W. K. Shieh, “Biofilter treatment of aquaculture water for reuse applications,” Water Res., vol. 35, no. 13, pp. 3097–3108, 2001, doi: 10.1016/S0043-1354(01)00036-7.

[11] S. O. Akinnawo, “Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies,” Environ. Challenges, vol. 12, p. 100733, 2023, doi: 10.1016/j.envc.2023.100733.

[12] F. dos S. Simões, A. B. Moreira, M. C. Bisinoti, S. M. N. Gimenez, and M. J. S. Yabe, “Water quality index as a simple indicator of aquaculture effects on aquatic bodies,” Ecol. Indic., vol. 8, no. 5, pp. 476–484, 2008, doi: 10.1016/j.ecolind.2007.05.002.

[13] C. E. Boyd and C. S. Tucker, “Water quality,” in Aquaculture: Farming Aquatic Animals and Plants, John Wiley & Sons Chichester, West Sussex, UK, 2019, pp. 63–92.

[14] D. J. W. Moriarty, “The role of microorganisms in aquaculture ponds,” Aquaculture, vol. 151, no. 1–4, pp. 333–349, 1997, doi: 10.1016/S0044-8486(96)01487-1.

[15] C. Zang et al., “Comparison of relationships between pH, dissolved oxygen and chlorophyll a for aquaculture and non-aquaculture waters,” Water. Air. Soil Pollut., vol. 219, no. 1–4, pp. 157–174, 2011, doi: 10.1007/s11270-010-0695-3.

[16] C. E. Boyd and C. S. Tucker, Pond aquaculture water quality management. Springer Science & Business Media, 2012.

[17] National Academies of Sciences Engineering and Medicine, Future Water Priorities for the Nation: Directions for the U.S. Geological Survey Water Mission Area. Washington, DC: The National Academies Press, 2018.

[18] J. A. Camargo and Á. Alonso, “Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment,” Environ. Int., vol. 32, no. 6, pp. 831–849, 2006, doi: 10.1016/j.envint.2006.05.002.

[19] J. H. Primavera, “Overcoming the impacts of aquaculture on the coastal zone,” Ocean Coast. Manag., vol. 49, no. 9–10, pp. 531–545, 2006, doi: 10.1016/j.ocecoaman.2006.06.018.

[20] J. H. Primavera, “A critical review of shrimp pond culture in the philippines,” Rev. Fish. Sci., vol. 1, no. 2, pp. 151–201, 1993, doi: 10.1080/10641269309388539.

[21] V. Hlordzi et al., “The use of Bacillus species in maintenance of water quality in aquaculture: A review,” Aquac. Reports, vol. 18, p. 100503, 2020, doi: 10.1016/j.aqrep.2020.100503.

[22] L. Zhang, L. Lin, and Z. Qin, “A review on the application of chicken immunoglobulin Y in aquaculture,” Rev. Aquac., vol. 16, no. 1, pp. 536–551, 2024, doi: 10.1111/raq.12850.

[23] C. E. Boyd and C. S. Tucker, Pond Aquaculture Water Quality Management. Springer Science & Business Media, 1998.

[24] M. Zhu et al., “A review of the application of machine learning in water quality evaluation,” Eco-Environment Heal., vol. 1, no. 2, pp. 107–116, 2022, doi: 10.1016/j.eehl.2022.06.001.

[25] M. K. Hossain et al., “Probiotics relieve growth retardation and stress by upgrading immunity in Nile tilapia (Oreochromis niloticus) during high temperature events,” Anim. Feed Sci. Technol., vol. 316, p. 116054, 2024, doi: 10.1016/j.anifeedsci.2024.116054.

[26] S. M. Islam, F. Akhter, I. Jahan, H. Rashid, and M. Shahjahan, “Alterations of oxygen consumption and gills morphology of Nile tilapia acclimatized to extreme warm ambient temperature,” Aquac. Reports, vol. 23, p. 101089, 2022, doi: 10.1016/j.aqrep.2022.101089.

[27] M. L. Rahman, M. Shahjahan, and N. Ahmed, “Tilapia farming in Bangladesh: Adaptation to climate change,” Sustain., vol. 13, no. 14, p. 7657, 2021, doi: 10.3390/su13147657.

[28] M. B. Hossain et al., “Growth performance and fatty acid profile of Nile tilapia Oreochromis niloticus (Linnaeus, 1758) fed with different phytoplankton,” Dhaka Univ. J. Biol. Sci., vol. 26, no. 1, pp. 13–27, 2017, doi: 10.3329/dujbs.v26i1.46346.

[29] A. Bal, F. Panda, S. G. Pati, K. Das, P. K. Agrawal, and B. Paital, “Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms: Redox regulation under salinity stress,” Comp. Biochem. Physiol. Part - C Toxicol. Pharmacol., vol. 241, p. 108971, 2021, doi: 10.1016/j.cbpc.2020.108971.

[30] A. Bhatnagar and P. Devi, “Water quality guidelines for the management of pond fish culture,” Int. J. Environ. Sci., vol. 3, no. 6, pp. 1980–2009, 2013, doi: 10.6088/ijes.2013030600019.

[31] J. Van Rijn, “Waste treatment in recirculating aquaculture systems,” Aquac. Eng., vol. 53, pp. 49–56, 2013, doi: 10.1016/j.aquaeng.2012.11.010.

[32] T. V. R. Pillay and M. N. Kutty, “Aquaculture: principles and practices.,” 2005.

[33] R. A. Rayan, M. Choudhury, M. Deb, A. Chakravorty, R. M. Devi, and J. Mehta, “Climate change: Impact on waterborne infectious diseases,” in Water Conservation in the Era of Global Climate Change, Elsevier, 2021, pp. 213–228.

[34] N. F. Gray, “The Implications of Global Warming and Climate Change on Waterborne Diseases,” in Microbiology of Waterborne Diseases: Microbiological Aspects and Risks: Second Edition, Elsevier, 2013, pp. 653–666.

[35] G. Cissé, “Food-borne and water-borne diseases under climate change in low- and middle-income countries: Further efforts needed for reducing environmental health exposure risks,” Acta Trop., vol. 194, pp. 181–188, 2019, doi: 10.1016/j.actatropica.2019.03.012.

[36] C. Tafangenyasha and L. T. Dube, “An investigation of the impacts of agricultural runoff on the water quality and aquatic organisms in a lowveld sand river system in Southeast Zimbabwe,” Water Resour. Manag., vol. 22, no. 1, pp. 119–130, 2008, doi: 10.1007/s11269-006-9147-7.

[37] V. Naddeo, D. Scannapieco, and V. Belgiorno, “Enhanced drinking water supply through harvested rainwater treatment,” J. Hydrol., vol. 498, pp. 287–291, 2013, doi: 10.1016/j.jhydrol.2013.06.012.

[38] S. Mondal, D. Mondal, T. Mondal, and J. Malik, “Application of probiotic bacteria for the management of fish health in aquaculture,” in Bacterial Fish Diseases, Elsevier, 2022, pp. 351–378.

[39] A. Rompré, P. Servais, J. Baudart, M.-R. De-Roubin, and P. Laurent, “A Comparison of the Multiple-Tube Fermentation Method and the Colitag Method for the Detection of Waterborne Coliform Bacteria,” Env. Sci, 2018, [Online]. Available: https://nature.berkeley.edu/classes/es196/projects/2001final/Hsieh.pdf.

[40] P. M. Fratamico et al., “Evaluation of a multiplex real-time PCR method for detecting Shiga toxin-producing Escherichia coli in beef and comparison to the U.S. Department of Agriculture food Safety and Inspection Service Microbiology Laboratory Guidebook method,” J. Food Prot., vol. 77, no. 2, pp. 180–188, 2014, doi: 10.4315/0362-028X.JFP-13-248.

[41] B. Li, H. Liu, and W. Wang, “Multiplex real-time PCR assay for detection of Escherichia coli O157:H7 and screening for non-O157 Shiga toxin-producing E. coli,” BMC Microbiol., vol. 17, no. 1, pp. 1–13, 2017, doi: 10.1186/s12866-017-1123-2.

[42] B. Zimoń, M. Psujek, J. Matczak, A. Guziński, E. Wójcik, and J. Dastych, “ Novel multiplex-PCR test for Escherichia coli detection ,” Microbiol. Spectr., vol. 12, no. 6, pp. e03773-23, 2024, doi: 10.1128/spectrum.03773-23.

[43] S. Fuhrimann et al., “Microbial contamination along the main open wastewater and storm water channel of Hanoi, Vietnam, and potential health risks for urban farmers,” Sci. Total Environ., vol. 566–567, pp. 1014–1022, 2016, doi: 10.1016/j.scitotenv.2016.05.080.

[44] C. E. Boyd, “General relationship between water quality and aquaculture performance in ponds,” in Fish Diseases: Prevention and Control Strategies, Elsevier, 2017, pp. 147–166.

[45] C. M. O’Reilly, S. R. Alin, P. D. Piisnier, A. S. Cohen, and B. A. McKee, “Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa,” Nature, vol. 424, no. 6950, pp. 766–768, 2003, doi: 10.1038/nature01833.

[46] D. Harper and K. Mavuti, “Lake Naivasha, Kenya: Ecohydrology to guide the management of a tropical protected area,” Ecohydrol. Hydrobiol., vol. 4, no. 3, pp. 287–305, 2004.

[47] W. M. Kemp et al., “Eutrophication of Chesapeake Bay: Historical trends and ecological interactions,” Mar. Ecol. Prog. Ser., vol. 303, pp. 1–29, 2005, doi: 10.3354/meps303001.

[48] K. Loucif and H. Chenchouni, “Water physicochemical quality as driver of spatial and temporal patterns of microbial community composition in lake ecosystems,” Appl. Water Sci., vol. 14, no. 6, p. 115, 2024, doi: 10.1007/s13201-024-02176-5.

[49] K. E. Havens, “Cyanobacteria blooms: effects on aquatic ecosystems.,” Adv. Exp. Med. Biol., vol. 619, pp. 733–747, 2008, doi: 10.1007/978-0-387-75865-7_33.

[50] H. W. Paerl and T. G. Otten, “Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls,” Microb. Ecol., vol. 65, no. 4, pp. 995–1010, 2013, doi: 10.1007/s00248-012-0159-y.

[51] J. Huisman, G. A. Codd, H. W. Paerl, B. W. Ibelings, J. M. H. Verspagen, and P. M. Visser, “Cyanobacterial blooms,” Nat. Rev. Microbiol., vol. 16, no. 8, pp. 471–483, 2018, doi: 10.1038/s41579-018-0040-1.

[52] H. W. Paerl and M. A. Barnard, “Mitigating the global expansion of harmful cyanobacterial blooms: Moving targets in a human- and climatically-altered world,” Harmful Algae, vol. 96, p. 101845, 2020, doi: 10.1016/j.hal.2020.101845.

[53] H. W. Paerl and V. J. Paul, “Climate change: Links to global expansion of harmful cyanobacteria,” Water Res., vol. 46, no. 5, pp. 1349–1363, 2012, doi: 10.1016/j.watres.2011.08.002.

[54] E. O. Echapare, F. A. A. Pacala, R. V. Mendańo, and J. B. Araza, “Physico-chemical and microbial analysis of water in Samar mussel farms,” Egypt. J. Aquat. Res., vol. 45, no. 3, pp. 225–230, 2019, doi: 10.1016/j.ejar.2019.05.007.

[55] J. W. Creswell, A concise introduction to mixed methods research. SAGE publications, 2014.

[56] Y. C. PH. and Chang, Qualitative, quantitative, and mixed methods approaches. Research Design Qualitative Quantitative and Mixed Methods Approaches, vol. 4, no. June. Sage publications, 2009.

[57] P. Lindholm‐Lehto, “Water quality monitoring in recirculating aquaculture systems,” Aquac. Fish Fish., vol. 3, no. 2, pp. 113–131, 2023, doi: 10.1002/aff2.102.

[58] A. Barbaresi, M. Agrusti, M. Ceccarelli, M. Bovo, P. Tassinari, and D. Torreggiani, “A method for the validation of measurements collected by different monitoring systems applied to aquaculture processing plants,” Biosyst. Eng., vol. 223, pp. 30–41, 2022, doi: 10.1016/j.biosystemseng.2021.07.011.

[59] F. J. Mesas-Carrascosa, D. Verdú Santano, J. E. Meroño, M. Sánchez de la Orden, and A. García-Ferrer, “Open source hardware to monitor environmental parameters in precision agriculture,” Biosyst. Eng., vol. 137, pp. 73–83, 2015, doi: 10.1016/j.biosystemseng.2015.07.005.

[60] editors E. W. R. R.B. Baird, A.D. Eaton, Standard Methods for the Examination of Water and Wastewater Standard Methods for the Examination of Water and Wastewater, vol. 51, no. 1. American public health association Washington, DC, 2012.

[61] M. E. E. Alahi and S. C. Mukhopadhyay, “Detection methods of nitrate in water: A review,” Sensors Actuators, A Phys., vol. 280, pp. 210–221, 2018, doi: 10.1016/j.sna.2018.07.026.

[62] World Health Organization (WHO), Guidelines for drinking-water quality. World Health Organization, 2008.

[63] J. Murphy and J. P. Riley, “A modified single solution method for the determination of phosphate in natural waters,” Anal. Chim. Acta, vol. 27, no. C, pp. 31–36, 1962, doi: 10.1016/S0003-2670(00)88444-5.

[64] F. Freitas de Oliveira, R. G. Moreira, and R. P. Schneider, “Evidence of improved water quality and biofilm control by slow sand filters in aquaculture – A case study,” Aquac. Eng., vol. 85, pp. 80–89, 2019, doi: 10.1016/j.aquaeng.2019.03.003.

[65] M. Vanacker, A. Wezel, F. Arthaud, M. Guérin, and J. Robin, “Determination of tipping points for aquatic plants and water quality parameters in fish pond systems: A multi-year approach,” Ecol. Indic., vol. 64, pp. 39–48, 2016, doi: 10.1016/j.ecolind.2015.12.033.

[66] A. J. Makori, P. O. Abuom, R. Kapiyo, D. N. Anyona, and G. O. Dida, “Effects of water physico-chemical parameters on tilapia (Oreochromis niloticus) growth in earthen ponds in Teso North Sub-County, Busia County,” Fish. Aquat. Sci., vol. 20, no. 1, pp. 1–10, 2017, doi: 10.1186/s41240-017-0075-7.

[67] J. A. Camargo, A. Alonso, and A. Salamanca, “Nitrate toxicity to aquatic animals: A review with new data for freshwater invertebrates,” Chemosphere, vol. 58, no. 9, pp. 1255–1267, 2005, doi: 10.1016/j.chemosphere.2004.10.044.

[68] R. J. Diaz and R. Rosenberg, “Spreading dead zones and consequences for marine ecosystems,” Science (80-. )., vol. 321, no. 5891, pp. 926–929, 2008, doi: 10.1126/science.1156401.

[69] V. H. Smith, G. D. Tilman, and J. C. Nekola, “Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems,” Environ. Pollut., vol. 100, no. 1–3, pp. 179–196, 1999, doi: 10.1016/S0269-7491(99)00091-3.

[70] N. J. Ashbolt, “Microbial contamination of drinking water and disease outcomes in developing regions,” Toxicology, vol. 198, no. 1–3, pp. 229–238, 2004, doi: 10.1016/j.tox.2004.01.030.

[71] N. J. Ashbolt, “Risk analysis of drinking water microbial contamination versus disinfection by-products (DBPs),” Toxicology, vol. 198, no. 1–3, pp. 255–262, 2004, doi: 10.1016/j.tox.2004.01.034.

[72] G. S. Bilotta and R. E. Brazier, “Understanding the influence of suspended solids on water quality and aquatic biota,” Water Res., vol. 42, no. 12, pp. 2849–2861, 2008, doi: 10.1016/j.watres.2008.03.018.

Downloads

Published

2025-04-09

How to Cite

[1]
P. E. L. Vicencio, M. M. C. Dela Cruz, and A. P. Reyes, “Environmental Assessment of Fishpond Water: Physicochemical and Microbial Analysis of Water Quality in Aquaculture”, Int. J. Environ. Eng. Educ., vol. 7, no. 1, pp. 25–34, Apr. 2025.

Issue

Section

Research Article