A Two-Dimensional Numerical Study of Evaporation by Mixed Convection of an Inclined Damp Flat Plate: A Lean Engineering Approach Using DMADV Methodology

Authors

  • Ando Dimbiharizafy School of Engineering and Geoscience, University of Antananarivo, Antananarivo 101, Madagascar
  • Andriamananarivo Ignace Rakotozandry School of Engineering and Geoscience, University of Antananarivo, Antananarivo 101, Madagascar
  • Josoa Randriamorasata School of Engineering and Geoscience, University of Antananarivo, Antananarivo 101, Madagascar

DOI:

https://doi.org/10.55151/ijeedu.v7i1.199

Keywords:

Adimensionalization, FAST Method, Implicit Finite Difference Method, Richardson Number, Sherwood Number

Abstract

This paper presents a two-dimensional numerical study of the evaporation by mixed convection of an inclined damp flat plate subjected to a constant heat flux density. Airflow, heat, and mass transfers are governed by the equations of continuity, motion, energy, and diffusion, to which boundary layer approximations are applied. Adimensionalization, implicit finite difference method, and programming on MATLAB are used to solve the equations. The methodology is designed using the FAST (Function Analysis System Technique) method and reinforced with DWADV (Define, Measure, Analyze, Design, Verify) by applying Lean Engineering and Six Sigma. The approximation in the boundary layer makes it possible to reduce the number of terms in the equations of the problem. Adimensionalization links the parameters together and reduces their number. The quantities studied no longer depend on the measurement system. Comparison with other studies allowed us to validate our results. The work ends with presenting results about the influence of the Richardson number and the flat’s inclination on non-dimensional velocity, non-dimensional temperature, non-dimensional concentration, and coefficients of exchange associated with mixed convection: friction coefficient, Nusselt and Sherwood number. The increase in the value of the Richardson number generates the opposite effect of the increase in the inclination of the plate on the parameters of mixed convection and the exchange coefficients.

Downloads

Download data is not yet available.

References

[1] F. Careri, R. H. U. Khan, C. Todd, and M. M. Attallah, “Additive manufacturing of heat exchangers in aerospace applications: a review,” Appl. Therm. Eng., vol. 235, p. 121387, 2023, doi: 10.1016/j.applthermaleng.2023.121387.

[2] C. ming Liu, H. bing Gao, L. yu Li, J. dong Wang, C. huan Guo, and F. chun Jiang, “A review on metal additive manufacturing: modeling and application of numerical simulation for heat and mass transfer and microstructure evolution,” China Foundry, vol. 18, no. 4, pp. 317–334, 2021, doi: 10.1007/s41230-021-1119-2.

[3] L. Yang et al., “Additive Manufacturing of Metals: The Technology, Materials, Design and Production,” Springer Ser. Adv. Manuf., p. 172, 2017, [Online]. Available: http://link.springer.com/10.1007/978-3-319-55128-9.

[4] A. Bejan, “Heatlines (1983) versus synergy (1998),” Int. J. Heat Mass Transf., vol. 81, pp. 654–658, 2015, doi: 10.1016/j.ijheatmasstransfer.2014.10.056.

[5] A. Bejan, “The thermodynamic design of heat and mass transfer processes and devices,” Int. J. Heat Fluid Flow, vol. 8, no. 4, pp. 258–276, 1987, doi: 10.1016/0142-727X(87)90062-2.

[6] F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer. John Wiley & Sons, 1996.

[7] A. Deshmukh et al., “Membrane distillation at the water-energy nexus: Limits, opportunities, and challenges,” Energy Environ. Sci., vol. 11, no. 5, pp. 1177–1196, 2018, doi: 10.1039/c8ee00291f.

[8] S. B. Sadineni, S. Madala, and R. F. Boehm, “Passive building energy savings: A review of building envelope components,” Renew. Sustain. Energy Rev., vol. 15, no. 8, pp. 3617–3631, 2011, doi: 10.1016/j.rser.2011.07.014.

[9] F. O. Pǎtrulescu, T. Groşan, and I. Pop, “Mixed convection boundary layer flow from a vertical truncated cone in a nanofluid,” Int. J. Numer. Methods Heat Fluid Flow, vol. 24, no. 5, pp. 1175–1190, 2014, doi: 10.1108/HFF-11-2012-0267.

[10] V. I. Terekhov and A. L. Ekaid, “Three-dimensional laminar convection in a parallelepiped with heating of two side walls,” High Temp., vol. 49, no. 6, pp. 874–880, 2011, doi: 10.1134/S0018151X11060228.

[11] J. V. Beck and R. L. McMasters, “Solutions for multi-dimensional transient heat conduction with solid body motion,” Int. J. Heat Mass Transf., vol. 47, no. 17–18, pp. 3757–3768, 2004, doi: 10.1016/j.ijheatmasstransfer.2004.03.012.

[12] O. D. Makinde and A. Aziz, “MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition,” Int. J. Therm. Sci., vol. 49, no. 9, pp. 1813–1820, 2010.

[13] A. J. Chamkha, “Non-similar solutions for heat and mass transfer by hydro-magnetic mixed convection flow over a plate in porous media with surface suction or injection,” Int. J. Numer. Methods Heat Fluid Flow, vol. 10, no. 2, pp. 142–162, 2000, doi: 10.1108/09615530010312301.

[14] X. Wang and L. Robillard, “Mixed convection in an inclined channel with localized heat sources,” Numer. Heat Transf. Part A Appl., vol. 28, no. 3, pp. 355–373, 1995, doi: 10.1080/10407789508913750.

[15] M. H. Yang and R. H. Yeh, “Optimization of fin arrays in an inclined channel for mixed convection,” Appl. Therm. Eng., vol. 148, pp. 963–976, 2019, doi: 10.1016/j.applthermaleng.2018.11.107.

[16] C. Gulenoglu, F. Akturk, S. Aradag, N. Sezer Uzol, and S. Kakac, “Experimental comparison of performances of three different plates for gasketed plate heat exchangers,” Int. J. Therm. Sci., vol. 75, pp. 249–256, 2014, doi: 10.1016/j.ijthermalsci.2013.06.012.

[17] S. kakac; H. L. A. Pramua, Heat exchangers: Selection, Rating, and Thermal Design. CRC press, 2012.

[18] J. Buongiorno, “Convective transport in nanofluids,” J. Heat Transfer, vol. 128, no. 3, pp. 240–250, 2006, doi: 10.1115/1.2150834.

[19] V. Mikkola, S. Puupponen, H. Granbohm, K. Saari, T. Ala-Nissila, and A. Seppälä, “Influence of particle properties on convective heat transfer of nanofluids,” Int. J. Therm. Sci., vol. 124, pp. 187–195, 2018, doi: 10.1016/j.ijthermalsci.2017.10.015.

[20] D. A. S. Rees and I. Pop, “Local Thermal Non-Equilibrium in Porous Medium Convection,” in Transport Phenomena in Porous Media III, Elsevier, 2005, pp. 147–173.

[21] A. Sundaramahalingam, S. Jegadheeswaran, M. Ponmurugan, and C. Sasikumar, “Review on Thermal Energy Storage with Phase Change Materials and Its Applications,” Springer Proc. Mater., vol. 5, no. 2, pp. 543–554, 2021, doi: 10.1007/978-981-15-8319-3_54.

[22] B. Straughan, Convection in porous media, vol. 165. Springer, 2008.

[23] D. A. Nield, A. Bejan, D. A. Nield, and A. Bejan, “Heat Transfer Through a Porous Medium,” Convect. porous media, pp. 37–55, 2017.

[24] W. Malalasekera, H. K. Versteeg, J. C. Henson, and J. C. Jones, “Calculation of radiative heat transfer in combustion systems,” Clean Air, vol. 3, no. 1, pp. 113–143, 2002.

[25] R. J. Bass, W. Malalasekera, P. Willmot, and H. K. Versteeg, “The impact of variable demand upon the performance of a combined cycle gas turbine (CCGT) power plant,” Energy, vol. 36, no. 4, pp. 1956–1965, 2011, doi: 10.1016/j.energy.2010.09.020.

[26] A. Salari, H. Shakibi, M. Alimohammadi, A. Naghdbishi, and S. Goodarzi, “A machine learning approach to optimize the performance of a combined solar chimney-photovoltaic thermal power plant,” Renew. Energy, vol. 212, pp. 717–737, 2023, doi: 10.1016/j.renene.2023.05.047.

[27] T. Muneer, J. Kubie, and T. Grassie, Introduction to heat transfer. John Wiley & Sons, 2020.

[28] Y. Mahmoudi, N. Karimi, and K. Mazaheri, “Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition: Effects of different thermal boundary conditions at the porous-fluid interface,” Int. J. Heat Mass Transf., vol. 70, pp. 875–891, 2014, doi: 10.1016/j.ijheatmasstransfer.2013.11.048.

[29] H. Maddah, R. Aghayari, M. Mirzaee, M. H. Ahmadi, M. Sadeghzadeh, and A. J. Chamkha, “Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3-TiO2 hybrid nanofluid,” Int. Commun. Heat Mass Transf., vol. 97, pp. 92–102, 2018, doi: 10.1016/j.icheatmasstransfer.2018.07.002.

[30] A. S. Mujumdar and S. Devahastin, “Fundamental Principles of Drying,” Free. Dry., vol. 1, no. 1, pp. 1–22, 2008.

[31] S. J. Park, K. M. Bang, B. Kim, P. Ziolkowski, J. R. Jeong, and H. Jin, “Adaptive thermoelectric cooling system for Energy-Efficient local and transient heat management,” Appl. Therm. Eng., vol. 216, p. 119060, 2022, doi: 10.1016/j.applthermaleng.2022.119060.

[32] W. H. Chen, M. Carrera Uribe, D. Luo, L. Jin, L. Huat Saw, and R. Lamba, “Taguchi optimization and analysis of variance for thermoelectric generators with forced convection air cooling,” Appl. Therm. Eng., vol. 231, p. 120878, 2023, doi: 10.1016/j.applthermaleng.2023.120878.

[33] V. Verma, A. Kane, and B. Singh, “Complementary performance enhancement of PV energy system through thermoelectric generation,” Renew. Sustain. Energy Rev., vol. 58, pp. 1017–1026, 2016, doi: 10.1016/j.rser.2015.12.212.

[34] A. Bejan, Convection Heat Transfer. John wiley & sons, 2013.

[35] T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. DeWitt, Introduction to heat transfer. John Wiley & Sons, 2011.

[36] D. A. Nield and A. Bejan, Convection in porous media, vol. 3. Springer, 2006.

[37] E. Atmaca and S. S. Girenes, “Lean Six Sigma methodology and application,” Qual. Quant., vol. 47, no. 4, pp. 2107–2127, 2013, doi: 10.1007/s11135-011-9645-4.

[38] G. K. Chandan, B. K. Kanchan, and D. Rajenthirakumar, “Lean start-up in market penetration using DMADV methodology: An empirical study,” Mater. Today Proc., vol. 63, pp. 328–334, 2022, doi: 10.1016/j.matpr.2022.03.166.

[39] J. A. Abdulkhudhur Hanoosh and T. O. Kowang, “The Fundamental Concept of Integrates Lean Six Sigma and DMADV Methodologies,” Int. J. Acad. Res. Bus. Soc. Sci., vol. 13, no. 10, pp. 1027–1040, 2023, doi: 10.6007/ijarbss/v13-i10/18960.

[40] M. G. Francisco, O. Canciglieri Junior, and Â. M. O. Sant’Anna, “Design for six sigma integrated product development reference model through systematic review,” Int. J. Lean Six Sigma, vol. 11, no. 4, pp. 767–795, 2020, doi: 10.1108/IJLSS-05-2019-0052.

[41] P. D. Lax and R. D. Richtmyer, “Survey of the stability of linear finite difference equations,” in Communications on Pure and Applied Mathematics, vol. 9, no. 2, Springer, 1956, pp. 267–293.

[42] P. D. Lax and R. D. Richtmyer, “Survey of the stability of linear finite difference equations,” in Selected Papers Volume I, Springer, 2005, pp. 125–151.

[43] E. H. Mezaache, H. Sedrati, and M. Daguenet, “Étude de l’Influence de la Convection Naturelle sur le Transfert de Chaleur et de Masse par Convection Mixte le long d’une Paroi Isotherme,” 2003.

[44] M. Nefzi and M. A. Knani, “The effect of Richardson number on thermal and mass behavior of laminar boundary layer flow,” Int. J. Mech. Energy, vol. 3, no. 2, pp. 43–48, 2015.

[45] A. Messadi and A. Benabderrahmane, “Amélioration du transfert thermique par l’utilisation de nanoparticules en convection naturelle le long d’une aiguille fine verticale soumise à un champ magnétique variable,” in International Conference on Advanced Mechanics and Renewable Energies (ICAMRE2018), 2018, pp. 1–8.

[46] T. Marie-Laure, “Analyse et caractérisation de la convection naturelle et de la convection mixte dans des enceintes confinées,” Animal Genetics. Toulouse, ENSAE, 2004.

[47] M.-L. Toulouse, “Analysis and characterization of natural convection and mixed convection in confined spaces,” ENSAE, Toulouse, 2004.

[48] H. Schlichting and K. Gersten, Boundary-layer theory. springer, 2016.

[49] Y. S. Muzychka and M. M. Yovanovich, Convective heat transfer. CRC press, 2016.

[50] W. Malalasekera and H. K. Versteeg, An introduction to computational fluid dynamics. Pearson education limited, 2007.

[51] J. H. Ferziger, M. Perić, and R. L. Street, Computational Methods for Fluid Dynamics, 4th ed. Springer, 2019.

[52] S.-E. Ouyahia, K. B. Youb, W. Berabou, M. Benzema, and A. Boudiaf, “Convection naturelle d’un nanofluide confiné dans une enceinte triangulaire: Effet du fractionnement et de la position de la source de chaleur,” 2017.

[53] J. M. Hugo, F. Topin, L. Tadrist, and E. Brun, “From pore scale numerical simulation of conjugate heat transfer in cellular material to effectives transport properties of real structures,” in 2010 14th International Heat Transfer Conference, IHTC 14, 2010, vol. 6, pp. 931–936, doi: 10.1115/IHTC14-22692.

Downloads

Published

2025-04-30

How to Cite

[1]
A. Dimbiharizafy, A. I. Rakotozandry, and J. Randriamorasata, “A Two-Dimensional Numerical Study of Evaporation by Mixed Convection of an Inclined Damp Flat Plate: A Lean Engineering Approach Using DMADV Methodology”, Int. J. Environ. Eng. Educ., vol. 7, no. 1, pp. 71–83, Apr. 2025.

Issue

Section

Research Article

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.